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I. Introduction

● What we want to discuss

Put a certain impulse on the nucleus

by Nuclear Reaction

=⇒
Observe its Responses

=⇒
Get information about Nuclear Structure

図 1 Hammer test of bridge

● What’s promising method ?
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・ Clean impulse & Clean target

=⇒ Clean responses

=⇒ Clear information

・ Dirty impulse & Dirty target

=⇒ Dirty responses

=⇒ Need a lot of efforts to get

meaningful information

図 2 M. Ichimura, Parity vol. 03, no. 12 (1988) 10

Ideal case Real world
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● What reactions produce clean impulses ?

・ Simple reaction mechanisms are favored.

・ Direct Reaction is promising.　

● Direct Reaction

・ Only a few degrees of freedom involve.

・ Short reaction time

(No time for complicate processes)

・ Only a few step processes involve.

4



Consequently

・ Higher energy reactions are favored.

・ Weaker interactions are favored.

・ Single step processes are most favorite.

・ Simple probes are favored.

Such as electron (e), nucleons (N), · · ·

In this lecture, I mostly restrict myself to

Single-step Reactions, described

by Distorted Wave Impulse Approximation

(DWIA).
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● Discrete vs. Continuum

For reactions to a discrete state,

a + A −→ b +B (isolated discrete state)

(a and b are structureless particles),

the impulses may be well characterized by

Transferred energy ω

Transferred spin Jtr

Transferred parity πtr

(Transferred isospin Ttr)

etc.

Theories for these reactions can be found

in the standard textbooks.
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However, if the final states of B is

in Continuum (unbound states),

Transferred quantum numbers are

hard to be distinguished

Standard methods encounter serious

problems in practical calculations

We need to develop proper methods

to cope with them.

For this purpose, I will discuss

Response Function method
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To design experiments. it is important to

choose proper impulses (reactions)

We must care of

・ Choice of probes

・ Selection rules

・ Choice of energy

・ Choice of angles

etc.

I hope this lecture helps a little.
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● Examples

・ Clean impulse

Ex. (e, e′), (ν, ν ′)

Use electric or weak interaction

・ Dirty impulse

Heavy ion reactions are usually

very complicated. Need special trick !

・ Relatively clean impulse

High energy nucleon scatterings

ex. (p, p′), (p, n), (n, p)

In this lecture, I mostly discuss

nucleon induced reactions.
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II. Basics of Reaction Theory

1. Convention

1.1 Natural unit

We use the natural unit in this lecture

h̄ = 1, c = 1

Don’t worry, just remember

h̄c ≈ 200 MeV · fm(= 197.326968)

[Exercise 1] Pion mass mπ = 140 MeV.

Calculate its Compton wave length in fm.

(Ans.)

λ

2π
=

1

mπ
=

h̄c

140MeV
=

200 MeV · fm
140MeV

= 1.4 fm
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1.2 Expression of the plane wave

In this lecture I express

the Plane wave with momentum p as

ϕp(r) = eip·r

● Normalization

⟨ϕp′|ϕp⟩ = (2π)3δ(p′ − p)

● Number of states in the phase volume d3p

dn =
d3p

(2π)3

Be careful about the convention.

Different textbooks use different conventions,

then the formulas of cross sections, etc.

are different correspondingly.
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[Just for fun] (= Appendix)

Other expressions of the plane wave

(1) Momentum normalization

ϕp(r) =
1√

(2π)3
eip·r

⟨ϕp′|ϕp⟩ = δ(p′ − p)

(2) Energy normalization (non-relativistic)

ϕp,E(r) =

√√√√√ mp

(2π)3
eip·r

with

E =
p2

2m

⟨ϕp′,E′|ϕp,E⟩ = δ(E ′ − E)δ(Ωp′ − Ωp)

12



[Comment]

● Box normalization

ϕpn(r) =
1√
L3

eipn·r

pn =

2π
L
nx,

2π

L
ny,

2π

L
nz



⟨ϕpn′xn′yn′z
|ϕpnxnynz⟩ = δn′xnxδn′ynyδn′znz

dn = dnxdnydnz =
L3

(2π)3
d3p

Set L3 = 1, then get our convention
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2. Relativistic Kinematics

2.1. One particle system

Energy-momentum vector (4-momentum)

pµ = (E,p)

On mass shell

pµpµ = E2 − p2 = m2

Velocity

v =
p

E

[Exercise 2] 300 MeV proton beam.

How much the velocity is ?

(Ans.) mp = 938 MeV, Tp = 300 MeV

Ep = mp + Tp = 1238 MeV

v =

√
E2

p −m2
p

Ep
= 0.65 not so small !!
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2.2. Two particle system

System with particles, 1 and 2

pµ1 = (E1,p1), E1 =
√
m2

1 + p2
1

pµ2 = (E2,p2), E2 =
√
m2

2 + p2
2

Total 4-momentum

pµ = pµ1 + pµ2

A Mandelstam variable

s = pµpµ = (E1 + E2)
2 − (p1 + p2)

2

Lorentz invariant !

†) There are the 3 Mandelstam variables (s, t, u)
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2.2.1 Center of mass (cm) frame

We attach * on the quantities in the cm frame

● Definition

The total 3-momentum obeys

P ∗ = p∗
1 + p∗

2 = 0

● Useful formulas

s = (E∗
1 + E∗

2)
2 − (p∗

1 + p∗
2)

2

= (E∗
1 + E∗

2)
2 = (E∗

total)
2

E∗
1 =

s +m2
1 −m2

2

2
√
s

,

E∗
2 =

s−m2
1 +m2

2

2
√
s
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[Just for fun]

|p∗
1| = |p∗

2|

=

√
s2 − 2s(m2

1 +m2
2) + (m2

1 −m2
2)2

2
√
s

R. Hagedron, Relativistic Kinematics,

The Benjamin/Cumming Pub. Co, INC (1963)
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3. Cross Section

Experimental data are usually presented

in terms of Cross Section

We observe

F : Number of incident particles

per unit time per unit surface

Flux (Strength of the incident beam)

∆N : Number of particles getting

into the counter per unit time

18



図 3 M. Ichimura, Mechanics, (1981) Asakura Pub. Co.

∆N can be expressed as

∆N = C
F∆S

R2
= CF∆Ω

R : Distance between the target and the counter

∆S : Area of the window of the counter

∆Ω : Solid angle for the counter window

∆S = R2∆Ω
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C represents the strength of the reaction

independent of the experimental system

C =
∆N

F∆Ω
−→ dσ

dΩ
= lim

∆Ω→0

∆N

F∆Ω

This is called differential cross section.

We will discuss various cross sections later.

—————————————————-

[Comment] Dimension of C

[C] =
[∆N ]

[F ][∆Ω]
=

[T−1]

[T−1L−2][1]
= [L2]

20



4. Formulas for Cross Sections

4.1 S matrix

State of the system

|i⟩ at t = −∞
|f⟩ at t = ∞

Transition amplitude ( i → f )

Sfi = ⟨f |S|i⟩

This is called S matrix
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[Just for fun]

A formal definition of S operator

(1) S is given by

the time developing unitary operator U as

S = lim
T→∞

U

T
2
,−T

2


where

U(t, t0) = eiH0te−iH(t−t0)e−iH0t0

(2) Equivalently but more commonly

by use of Möller operators Ω±

S = Ω†
−Ω+

where

Ω+ = lim
t→−∞

eiHte−iH0t

Ω− = lim
t→∞

eiHte−iH0t
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4.2 T matrix

S matrix is written as

Sfi ≡ δfi + i(2π)4 δ(4)(pµf − pµi )Tfi

= δfi + i(2π)4δ(Ef − Ei) δ
(3)(Pf − Pi)Tfi

Ei : Total energy of the initial state

Ef : Total energy of the final state

Pi : Total momentum of the initial state

Pf : Total momentum of the final state

Tfi : T -matrix

It involves at least one interaction.
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4.3 Transition probability

● Transition probability

P (i → f ) = |Sfi|2

For |i⟩ ≠ |f⟩

P (i → f )

= [(2π)δ(Ef − Ei)]
2[(2π)3δ(3)(Pf − Pi)]

2

×|Tfi|2

= TV (2π)4δ(Ef − Ei)δ
(3)(Pf − Pi)|Tfi|2

V : Normalization volume (V = 1)

T : Elapsed time

—————————————————-
Used a trick

[(2π)δ(Ef − Ei)]
2

= (2π)δ(Ef − Ei)
∫ T/2

−T/2
ei(Ef−Ei)tdt

= T (2π)δ(Ef − Ei)
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4.4 Transition rate

● Transition rate

wfi =
P (i → f )

T
= (2π)4δ(Ef − Ei)δ

(3)(Pf − Pi)|Tfi|2

We set V = 1
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4.5 Expression of the cross section

Consider the reaction

1 + 2 → 3 + 4 + · · ·

3

T

1

2

4

ｎ

Ei = E1 + E2, Ef = E3 + E4 + · · ·
Pi = p1 + p2, Pf = p3 + p4 + · · ·

Ej =
√
m2

j + p2
j , (j = 1, 2, 3, 4, · · ·)
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We observe the exit particles with accuracy

d3p3d
3p4 · · ·

in which number of states is

d3p3

(2π)3
d3p4

(2π)3
· · ·

Transition rate to the observed final states

dwfi = (2π)4δ(Ef − Ei)δ
(3)(Pf − Pi)

× |Tfi|2
d3p3

(2π)3
d3p4

(2π)3
· · ·
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Cross section

dσ =
dwfi

F

with the flux

F = |v1 − v2| = vrel

Now we get

dσ =
(2π)4δ(Ef − Ei)δ

(3)(Pf − Pi)

vrel

× |Tfi|2
d3p3

(2π)3
d3p4

(2π)3
· · ·

It is expressed by

・ T-matrix,

・ phase volume of the final states,

・ relative velocity of the initial channel

・ energy-momentum conservation condition
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4.6 Two-body to two-body reactions

Reaction

1 + 2 −→ 3 + 4

T

1

2

3

4

Cross section

dσ =
δ(Ef − Ei)δ

(3)(Pf − Pi)

(2π)2|v1 − v2|
|Tfi|2d3p3d

3p4

Ei = E1 + E2, Ef = E3 + E4

Pi = p1 + p2, Pf = p3 + p4
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4.6.1 Center of mass frame

Attach ∗ on the quantities in the cm. frame

1 2

4

3
θ

図 4 θ : Scattering angle (omitted ∗)

We write

ki = p∗
1 = −p∗

2, kf = p∗
3 = −p∗

4

In this frame

P ∗
i = p∗

1 + p∗
2 = 0,

√
s = E∗

i = E∗
1 + E∗

2
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We can calculate

v∗
1 − v∗

2 =
ki

E∗
1

− −ki

E∗
2

=
ki

µi

with

µi =
E∗

1E
∗
2

E∗
1 + E∗

2

=
E∗

1E
∗
2√

s

The Reduced energy of the incident channel.

The cross section becomes

dσ = δ(E∗
3 + E∗

4 −
√
s)δ(3)(p∗

3 + p∗
4)

× 1

(2π)2
µi

ki
|Tfi|2d3p∗

3d
3p∗

4

Integrate over p∗
4, note p

∗
3 = kf ,

Use the energy-angle representation,

d3kf = kfE
∗
3 dE∗

3dΩ
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we get

dσ = δ(E∗
3 + E∗

4 −
√
s)dE∗

3 ×
µiE

∗
3

(2π)2
kf
ki
|Tfi|2dΩ

Noting

E∗
4 =

√
m2

4 + k2f =
√
m2

4 + (E∗
3)2 −m2

3

we can rewrite

δ(E∗
3 + E∗

4 −
√
s)dE∗

3 =
µf

E∗
3

δ(E∗
3 − Ē∗

3)dE
∗
3

with

µf =
E∗

3E
∗
4

E∗
3 + E∗

4

=
E∗

3(
√
s− E∗

3)√
s

and

Ē∗
3 =

s +m2
3 −m2

4

2
√
s

————————————————
We used the delta function formula

δ(f(x))dx =
∑
α

δ(x− xα)

|df(x)/dx|
dx

xα : zero point of f(x)
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Finally we get

● Double differential cross section

d2σ

dE∗
3dΩ

= K|Tfi|2δ(E∗
3 − Ē∗

3)

with the kinetic factor

K ≡ µiµf

(2π)2
kf
ki
,

the Reduced Energies

µi =
E∗

1E
∗
2√

s
,

µf =
E∗

3E
∗
4√

s
=

Ē∗
3(
√
s− Ē∗

3)√
s

and the ejectile energy

Ē∗
3 =

s +m2
3 −m2

4

2
√
s
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● Differential cross section

If the particle 4 is

・ an elementary particle (no excited state),

or

・ in the well isolated state,

we get the differential cross section by

integrating over E∗
3 as

dσ

dΩ
= K |Tfi|2
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[Just for fun]

In the textbooks of the relativity,

the T-matrix is written as

Tfi ≡
Mfi√

(2E1)(2E2)(2E3)(2E4)

and then the cross section is expressed as

dσ

dΩ
=

1

64π2s

kf
ki
|Mfi|2
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4.6.2 Energy transfer expression

Double differential cross sections are often

expressed with respect to

the energy transfer to the target

ω∗ = E∗
1 − E∗

3

Double differential cross section

d2σ

dω∗dΩ
= K |Tfi|2 δ(ω∗ − ω̄∗)

with

ω̄∗ = E∗
1 − Ē∗

3 =
m2

1 −m2
2 −m2

3 +m2
4

2
√
s
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4.7 Non-relativistic formulas

・ Reduced energy =⇒ Reduced mass

µi =
m1m2

m1 +m2
, µf =

m3m4

m3 +m4

・ Total energy

E∗
1 + E∗

2 = m1 +m2 + Ti

E∗
3 + E∗

4 = m3 +m4 + Tf

・ Kinetic energy of the relative motion

Ti =
k2i
2µi

, Tf =
k′2f
2µf

・ Reaction Q-value

Q = m1 +m2 − (m3 +m4)
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Rewriting the infinitesimal phase volume as

d3kf = k2fdkfdΩ = kfµfdTfdΩ

and thus

δ(E∗
1 + E∗

2 − E∗
3 − E∗

4)d
3kf

= µfkfδ(Ti +Q− Tf)dTfdΩ

we get

● Double differential cross section

d2σ

dTfdΩ
= K |Tfi|2δ(Ti +Q− Tf)

● Differential cross section

dσ

dΩ
= K |Tfi|2
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5. Inclusive Cross Section

Return to the general cace

1 + 2 → 3 + 4 + · · · + n

5.1. Inclusive measurement

Detect only the particle 3

1 + 2 → 3 + anything

Inclusive cross section

dσ =
2π

vrel
d3p3

∫
δ(Ef − Ei)δ

(3)(Pf − Pi)

× |Tfi|2
d3p4

(2π)3
· · · d

3pn

(2π)3
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5.2. Invariant mass

T

1

2

3

4

ｎ

Introduce

・ Total momentum of the residual system

P ∗
res ≡

n∑
j=4

pj

・ Total energy of the residual system

E∗
res ≡

n∑
j=4

Ej

・ Invariant mass of the residual system

M 2
res ≡ E∗2

res − P ∗2
res
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5.3 Formulas in the cm frame

In the cm frame

P ∗
f = p∗

3 + P ∗
res = 0

As before we write

p∗
3 = kf

The cross section can be written as a similar

form as the two-body to two-body reactions,

by replacing

p∗
4 → P ∗

res, E∗
4 → E∗

res, m4 → Mres

.
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● Double differential cross section

d2σ

dω∗dΩ
= K

∫
|Tfi|2 δ(ω∗ − ω̄∗)

× (2π)3δ (kf + P ∗
res)

d3p∗
4

(2π)3
· · · d

3p∗
n

(2π)3

with

ω̄∗ =
m2

1 −m2
2 −m2

3 +M 2
res

2
√
s

Ex. GTGR

図 5 C. Gaarde et at., NP A369, 258(1981)
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Using P ∗
res =

∑n
j=4 pj = −kf , we may write

∫
δ (kf + P ∗

res) d
3p∗

4 · · · d3p∗
n · · ·

=
∫
d3κ1 · · · d3κn−4 · · ·

where κ1 · · ·κn−4 are suitably chosen

internal momenta of the residual system.

● Double differential cross section

d2σ

dω∗dΩ

= K
∫
|Tfi|2 δ(ω∗ − ω̄∗)

d3κ1

(2π)3
· · · d

3κn−3

(2π)3

How to treat the integral
∫
d3κ1 · · · d3κn−4 is

a main subject of this lecture
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Other cross sections found in the literature

● Angular distribution

Angular distribution at ω∗

dσ

dΩ
=

∫ ω∗+δϵ

ω∗−δϵ

 d2σ

dω∗dΩ

 dω∗

● Angle integrated

energy differential cross section

dσ

dω∗ =
∫  d2σ

dω∗
3dΩ

 dΩ
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6. Frame Transformation

● Experiments are usually carried out

in the laboratory (lab) frame, where

plab
2 = 0

● Theoretical calculations are usually done

in the cm frame, where

p∗
1 + p∗

2 = 0

We need the transformation formulas from

the cm frame to the lab frame or vice versa.
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6.1 Relativistic kinematics

Energy of the incident particle is usually

written by the incident kinetic energy T1 as

E lab
1 = m1 + T1

thus

s = (m1 +m2)
2 + 2m2T1

● Lorentz transformation parameters, (β, γ)

β = V =
|plab

1 |
E lab

1 + E lab
2

=

√
T1(T1 + 2m1)

m1 +m2 + T1

γ =
1√

1− β2
=

m1 +m2 + T1√
s

V : Velocity of the center of mass

[Exercise] Prove the above formulas.
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● Lorentz transformation

The energy-momentum of the ejectile

(particle 3)

plab3 cos θlab = γ(p∗3 cos θ + βE∗
3)

plab3 sin θlab = p∗3 sin θ

E lab
3 = γ(E∗

3 + βp∗3 cos θ)

From them, we get

(1) Scattering angle

tan θlab =
sin θ

γ(cos θ + α)

with

α =
V

v∗3
, v∗3 =

p∗3
E∗

3

v∗3 : velocity of the ejectile (particle 3)
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(2) Double differential cross section

 d2σ

dE∗
3dΩ

 =

 d2σ

dE lab
3 dΩlab

 ∂(E lab
3 ,Ωlab)

∂(E∗
3 ,Ω)

∂(E lab
3 ,Ωlab)

∂(E∗
3 ,Ω)

=

∣∣∣∣∣∣∣∣∣
∂Elab

3
∂E∗

3
, ∂Elab

3
∂ cos θ

∂ cos θ
∂E∗

3
, ∂ cos θlab

∂ cos θ

∣∣∣∣∣∣∣∣∣
=

1

(γ2(cos θ + α)2 + sin2 θ)1/2
=

sin θlab
sin θ

thus  d2σ

dE∗
3dΩ

 =
sin θlab
sin θ

 d2σ

dE lab
3 dΩlab


or

 d2σ

dω∗dΩ

 =
sin θlab
sin θ

 d2σ

dωlabdΩlab


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For the case of final two elementary particles

Differential cross section

dσ

dΩ
=

 dσ

dΩlab

 dΩlab

dΩ

dΩlab

dΩ
=

γ(1 + α cos θ)

(γ2(cos θ + α)2 + sin2 θ)3/2

49



6.2 Non-relativistic kinematics

Velocity of the center of mass in lab frame

V =
m1

m1 +m2
vlab1

Galilei transformation

vlab3 cos θlab = v∗3 cos θ + V

vlab3 sin θlab = v∗3 sin θ

Just set γ = 1 in the relativistic formula,

● Scattering angle

tan θlab =
sin θ

cos θ + α
, α =

V

v∗3

● Differential cross section

dσ

dΩ
=

 dσ

dΩlab

 1 + α cos θ

(1 + 2α cos θ + α2)3/2
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● Double differential cross section

We write the energies as

E lab
3 = m3 +

(plab3 )2

2m3
= m3 + T lab

3

E∗
3 = m3 +

k2f
2m3

= m3 + T ∗
3

Tf =
k2f
2µf

=
m3 +m4

m4
T ∗
3

 d2σ

dTfdΩ

 =

 d2σ

dT lab
3 dΩlab

 ∂(T lab
3 ,Ωlab)

∂(T ∗
3 ,Ω)

dT ∗
3

dTf

we get d2σ

dTfdΩ

 =

 d2σ

dT lab
3 dΩlab

 m4

m3 +m4

sin θlab
sin θ
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[Just for fun]

Calculation of
∂(T lab

3 ,Ωlab)

∂(T ∗
3 ,Ω)

From the velocity-angle relations

vlab3 cos θlab = v∗3 cos θ + V

vlab3 sin θlab = v∗3 sin θ

tan θlab =
sin θ

cos θ + α

we get

cos θlab =

(
1

1 + tan2 θlab

)1/2
=

cos θ + α

(1 + 2α cos θ + α2)1/2

(vlab3 )2 = (v∗3)
2(1 + 2α cos θ + α2)

thus

T lab
3 = T ∗

3 (1 + 2α cos θ + α2)

The velocity ratio α is given by

α =
V

v∗3
= V

√√√√m3

2T ∗
3

thus
∂α

∂T ∗
3

= − α

2T ∗
3

,
∂α

∂ cos θ
= 0
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Now we get

∂T lab
3

∂T ∗
3

= (1 + 2α cos θ + α2) + 2T ∗
3 (cos θ + α)

∂α

∂T ∗
3

= 1 + α cos θ
∂T lab

3

∂ cos θ
= 2αT ∗

3

∂ cos θlab
∂T ∗

3

=
∂ cos θlab

∂α

∂α

∂T ∗
3

= − α

2T b
cm

sin2 θcm
(1 + 2α cos θcm + α2)3/2

∂ cos θlab
∂ cos θ

=
1 + α cos θ

(1 + 2α cos θ + α2)3/2

Using these formulas, we finally obtained the

Jacobian

∂(T lab
3 ,Ωlab)

∂(T ∗
3 ,Ω)

=
∂(T lab

3 , cos θlab)

∂(T ∗
3 , cos θ)

=

∣∣∣∣∣∣∣
∂T lab

3

∂T ∗
3
, ∂T lab

3

∂ cos θ
∂ cos θlab

∂T ∗
3

, ∂ cos θlab
∂ cos θ

∣∣∣∣∣∣∣
=

1

(1 + 2α cos θ + α2)1/2
=

v∗3
vlab3

=
sin θlab
sin θ
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7. Spin Observables

When the projectile and the ejectile have

spins, and their directions are observed,

the data present us very powerful and fruitful

information to study the nuclear structure.

As an example, I want to refer

spin observables in the nucleon scatterings

A(N,N ′)B

N,N ′ : p (proton) or n (neutron)

T

N

A

N’

B
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7.1 Review about spin operators

Pauli spin matrices

σx =

 0 1

1 0

 , σy =
 0 −i

i 0

 , σz =
 1 0

0 −1



Spin operator

s =
1

2
σ

Useful formulas for σa (a = x, y, z)

σaσa = 1 =

 1 0

0 1

 , σaσb = iϵabcσc

Tr [σa] = 0, Tr [σaσb] = 2δab
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7.2. Coordinate systems

The following coordinate system is often used

in the theoretical analysises

● [q̂, n̂, p̂] system

q̂ =
q∗

| q∗ |
, n̂ =

ki × kf

|ki × kf |
, p̂ = q̂ × n̂

Their directions are denoted by (q, n, p).

θ
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[Just for fun]

(1) [x,y, z] system

ẑ =
ki

|ki|
, ŷ = n̂, x̂ = ŷ × ẑ ,

This is used in the numerical calculation.

(2) [S,N ,L], and [S′,N ′,L′] systems

Ŝ = x̂, N̂ = ŷ, L̂ = ẑ

N̂ ′ = N̂ , L̂′ =
klab
f

|klab
f |

, Ŝ′ = N̂ ′ × L̂′ .

Used for experimental data in the lab. frame
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7.3. T-matrix

T-matrix is specified more explicitly as

Tfi = ⟨kfµfN
′,ΦB|T |kiµiN,ΦA⟩

= (⟨kfN
′,ΦB|T |ki,N,ΦA⟩)µf ,µi

This is a 2 x 2 matrix with respect to (µf , µi)

It is generally written as

Tfi = T0 + Tnσn + Tqσq + Tpσp

σi’s denote the spin operator for N (N’).

Ti’s abbreviate the marix element.

Ti = ⟨kf ,N
′,ΦB|Ti|ki,N,ΦA⟩
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7.4. Unpolarized cross section

● Unpolarized differential

cross section

I =
d2σ

dω∗dΩ

= K
∑
µf

1

2

∑
µi

∣∣∣∣(T )µfµi
∣∣∣∣2 = K

2
Tr

[
T †T

]

= K
[
T †
0T0 + T †

nTn + T †
q Tq + T †

pTp

]

Tr : Trace with respect to the nucleon spin.

Define

Polarized Cross Sections IDi

IDi = K
[
T †
i Ti

]
, (i = 0, q, n, p)

Cross section is expressed as

d2σ

dω∗dΩ
= ID0 + IDn + IDq + IDp
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7.5. Spin observables

● Polarization

Py =
Tr[T †σyT ]

Tr[T †T ]
,

● Analyzing power

Ay =
Tr[T †Tσy]

Tr[T †T ]

● Polarization transfer coefficients

Dij =
Tr[T †σiTσj]

Tr[T †T ]
, (i, j = p, q, n)

Refer Wakasa-san’ talk about the definitions and

the measurements of Py, Ay, Dij
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● Polarized cross sections

We obtain IDi by the combination of Dij as

ID0 =
I

4
[1 +Dnn +Dqq +Dpp] = K[T †

0T0]

IDn =
I

4
[1 +Dnn −Dqq −Dpp] = K[T †

nTn]

IDq =
I

4
[1−Dnn +Dqq −Dpp] = K[T †

qTq]

IDp =
I

4
[1−Dnn −Dqq +Dpp] = K[T †

pTp]

They are very useful to extract

spin-longitudinal and spin-transverse

responses.

See Wakasa-san’s lecture
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8. Summary

We considered the reactions

3

T

1

2

4

ｎ

● Cross section

dσ =
(2π)4δ(Ef − Ei)δ

(3)(Pf − Pi)

vrel

× |Tfi|2
d3p3

(2π)3
d3p4

(2π)3
· · ·
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● Inclusive cross section in the cm frame

T

1

2

3

4

ｎ

d2σ

dω∗dΩ
= K

∫
|Tfi|2 δ(ω∗ − ω̄∗)

× (2π)3δ (kf + P ∗
res)

d3p∗
4

(2π)3
· · · d

3p∗
n

(2π)3

ω̄∗ =
m2

1 −m2
2 −m2

3 +M 2
res

2
√
s

M 2
res = (

n∑
j=4

Ej)
2 − (

n∑
j=4

pj)
2
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● Frame transformation

Double differential cross section

 d2σ

dω∗dΩ

 =
sin θlab
sin θ

 d2σ

dωlabdΩlab



Differential cross section

dσ

dΩ
=

γ(1 + α cos θ)

(γ2(cos θ + α)2 + sin2 θ)3/2

 dσ

dΩlab


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● Spin observables in (N,N ′) reaction

T-matrix

Tfi = T0 + Tnσn + Tqσq + Tpσp

Unpolarized cross section

I =
d2σ

dω∗dΩ
=

K

2
Tr

[
T †T

]

Polarized cross sections

ID0 =
I

4
[1 +Dnn +Dqq +Dpp] = K[T †

0T0]

IDn =
I

4
[1 +Dnn −Dqq −Dpp] = K[T †

nTn]

IDq =
I

4
[1−Dnn +Dqq −Dpp] = K[T †

qTq]

IDp =
I

4
[1−Dnn −Dqq +Dpp] = K[T †

pTp]
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