Nuclear Direct Reactions to Continuum 2

- How to get Nuclear Structure Information -

Munetake ICHIMURA (RNC)

III. PWBA I - Fundamental Examples 1. PWBA
2. Fundamental Examples
2.1. Simplest (fundamental) case
2.2. Cases with spin and isospin
2.3. Reactions of composite particles
2.4. Rearrangement collision
2.5. Exchange processes
IV. PWBA II -Reactions to Continuum

1. Simplest Reaction
2. Response Function Formalism
3. Summary

III PWBA I

1. PWBA

As the first stage 1
Let's consider reactions in PWBA
(Plane Wave Born Approximation)

- This is an ideal clean impulse model.
- This may not be realistic, but tells us fundamental structure of the reactions.
- We can learn what information can be obtained from the reaction considered.
- This is very important to design (or analyse) experiments.

Let's consider a final two-body reaction

$$
a+A \longrightarrow b+B
$$

usually written as

$$
A(a, b) B
$$

1.1 Born Approximation

Assume that the interaction works only once

$$
T_{f i}=\left\langle\phi_{f} \Phi_{b} \Phi_{B}\right| V\left|\Phi_{A} \Phi_{a} \phi_{i}\right\rangle
$$

Φ_{A} : wave function of the particle A
Φ_{B} : wave function of the particle B
Φ_{a} : wave function of the particle a
Φ_{b} : wave function of the particle b
$\phi_{i}:$ w. f. of the relative motion between a and A
$\phi_{f}:$ w. f. of the relative motion between b and B
V : interaction between a and A or b and B

1.2 Plane Wave Approximation

Assume that the relative motions are described by the plane wave

$$
\phi_{i}=\mathrm{e}^{\mathrm{i} \boldsymbol{k}_{i} \cdot \boldsymbol{R}_{i}}, \quad \phi_{f}=\mathrm{e}^{\mathrm{i} \boldsymbol{k}_{f} \cdot \boldsymbol{R}_{f}}
$$

\boldsymbol{R}_{i} : Relative coordinate between a and A
\boldsymbol{R}_{f} : Relative coordinate between b and B
\boldsymbol{k}_{i} : Momentum of the relative motion in the initial channel
\boldsymbol{k}_{f} : Momentum of the relative motion in the final channel

1.3 PWBA

Plane wave approx. + Born approx.

$$
T_{f i}=\left\langle\mathrm{e}^{\mathrm{i} \boldsymbol{k}_{f} \cdot \boldsymbol{R}_{f}} \Phi_{b} \Phi_{B}\right| V\left|\Phi_{A} \Phi_{a} \mathrm{e}^{\mathrm{i} \boldsymbol{k}_{i} \cdot \boldsymbol{R}_{i}}\right\rangle
$$

2. Fundamental Examples

2.1. Simplest (fundamental) case

Consider a reaction

$$
A\left(a, a^{\prime}\right) B
$$

a, a^{\prime} : structureless point particle

- Interaction

Sum of the two-body interaction

$$
V=\sum_{k \in A} V\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{k}\right)
$$

Its Fourier transform

$$
V\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{k}\right)=\int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}} \tilde{V}(\boldsymbol{p}) \mathrm{e}^{\mathrm{i} \boldsymbol{p} \cdot\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{k}\right)}
$$

- Wave functions of the relative motion

$$
\phi_{i}=\mathrm{e}^{\mathrm{i} \boldsymbol{k}_{i} \cdot \boldsymbol{r}_{0}}, \quad \phi_{f}=\mathrm{e}^{\mathrm{i} \boldsymbol{k}_{f} \cdot \boldsymbol{r}_{0}}
$$

Calculation of the T-matrix

$$
\begin{aligned}
T_{f i} & =\left\langle\phi_{f} \Phi_{B}\right| V\left|\Phi_{A} \phi_{i}\right\rangle \\
& =\int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}} \tilde{V}(\boldsymbol{p}) \\
& \times \int d^{3} \boldsymbol{r}_{0} \mathrm{e}^{-\mathrm{i} \boldsymbol{k}_{f} \cdot \boldsymbol{r}_{0}} \mathrm{e}^{\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{r}_{0}} \mathrm{e}^{\mathrm{i} \boldsymbol{k}_{i} \cdot \boldsymbol{r}_{0}} \\
& \times\left\langle\Phi_{B}\right| \sum_{k} \mathrm{e}^{-\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{r}_{k}}\left|\Phi_{A}\right\rangle \\
& =\int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}} \tilde{V}(\boldsymbol{p})(2 \pi)^{3} \delta\left(\boldsymbol{k}_{i}+\boldsymbol{p}-\boldsymbol{k}_{f}\right) \\
& \times\left\langle\Phi_{B}\right| \sum_{k} \mathrm{e}^{-\mathrm{i} \boldsymbol{p} \cdot\left(\boldsymbol{r}_{k}\right)}\left|\Phi_{A}\right\rangle \\
& =\tilde{V}\left(\boldsymbol{q}^{*}\right)\left\langle\Phi_{B}\right| \sum_{k} \mathrm{e}^{-\mathrm{i} \boldsymbol{q}^{*} \cdot \boldsymbol{r}_{k}}\left|\Phi_{A}\right\rangle
\end{aligned}
$$

with Momentum Transfer

$$
\boldsymbol{q}^{*}=\boldsymbol{k}_{f}-\boldsymbol{k}_{i}
$$

- Density operator

We define the density operator

$$
\rho(\boldsymbol{r})=\sum_{k=1}^{A} \delta\left(\boldsymbol{r}-\boldsymbol{r}_{k}\right)=\int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}} \tilde{\rho}(\boldsymbol{p}) \mathrm{e}^{\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{r}}
$$

then

$$
\tilde{\rho}(\boldsymbol{p})=\int d^{3} \boldsymbol{r} \rho(\boldsymbol{r}) \mathrm{e}^{-\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{r}}=\sum_{k=1}^{A} \mathrm{e}^{-\mathrm{i} \cdot \boldsymbol{p} \cdot \boldsymbol{r}_{k}}
$$

- Transition form factor

We define the transition form factor

$$
\begin{aligned}
F_{B A}\left(\boldsymbol{q}^{*}\right) & \equiv\left\langle\Phi_{B}\right| \sum_{k} \mathrm{e}^{-\mathrm{i} \boldsymbol{q}^{*} \cdot r_{k}}\left|\Phi_{A}\right\rangle \\
& =\left\langle\Phi_{B}\right| \tilde{\rho}\left(\boldsymbol{q}^{*}\right)\left|\Phi_{A}\right\rangle
\end{aligned}
$$

- T-matrix

$$
T_{f i}=\tilde{V}\left(\boldsymbol{q}^{*}\right) F_{B A}\left(\boldsymbol{q}^{*}\right)
$$

- Differential cross section

$$
\frac{d \sigma}{d \Omega}=K\left|V\left(\boldsymbol{q}^{*}\right)\right|^{2}\left|F_{A^{*} A}\left(\boldsymbol{q}^{*}\right)\right|^{2}
$$

reaction structure
part part
\bigcirc The reaction part and the structure part are factorized!
\bigcirc Determined only by
the momentum transfer \boldsymbol{q}^{*}
except for the kinematical factor

$$
K=\frac{\mu_{i} \mu_{f}}{(2 \pi)^{2}} \frac{k_{f}}{k_{i}}
$$

[Comment 1]
Note the relation $\quad q^{*} \Leftrightarrow \theta$

$$
q^{*}=\left|\boldsymbol{q}^{*}\right|=\sqrt{k_{i}^{2}+k_{f}^{2}-2 k_{i} k_{f} \cos \theta}
$$

We can easily guess the angular distribution.
[Comment 2]
Note the restriction!

$$
\sum_{k=1}^{A} \boldsymbol{r}_{k}=0
$$

Exactly speaking $\rho(\boldsymbol{r})$ is not a one-body operator.
Forget for a while! We will touch later

2.2 Cases with spin and isospin

Consider a reaction

$$
A(p, n) B
$$

$\mu_{i}, \mu_{f}:$ z-component of the nucleon spin

2.2.1 Isospin operators

(Pauli) isospin matrices of the nucleon $\boldsymbol{\tau}$

$$
\tau \longleftarrow \sigma
$$

Isospin operators

$$
\boldsymbol{t}=\frac{1}{2} \boldsymbol{\tau}
$$

Isospin raising and lowering operators

$$
\begin{aligned}
& t^{+}=t_{x}+\mathrm{i} t_{y}=\frac{1}{2}\left(\tau_{x}+\mathrm{i} \tau_{y}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
& t^{-}=t_{x}-\mathrm{i} t_{y}=\frac{1}{2}\left(\tau_{x}-\mathrm{i} \tau_{y}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Convention in nuclear physics

$$
\begin{array}{cc}
\tau_{z}|n\rangle=|n\rangle, & \tau_{z}|p\rangle=-|p\rangle \\
|n\rangle=t^{+}|p\rangle, & |p\rangle=t^{-}|n\rangle
\end{array}
$$

2.2.2 Case 1

- Interaction

$$
\begin{aligned}
V & =\sum_{k}\left(\boldsymbol{\tau}_{0} \cdot \boldsymbol{\tau}_{k}\right)\left(\boldsymbol{\sigma}_{0} \cdot \boldsymbol{\sigma}_{k}\right) V_{\tau \sigma}\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{k}\right) \\
& =\sum_{k}\left(\boldsymbol{\tau}_{0} \cdot \boldsymbol{\tau}_{k}\right)\left(\boldsymbol{\sigma}_{0} \cdot \boldsymbol{\sigma}_{k}\right) \\
& \times \int \tilde{V}_{\tau \sigma}(\boldsymbol{p}) \mathrm{e}^{\mathrm{i} \boldsymbol{p} \cdot\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{k}\right)} \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}}
\end{aligned}
$$

T-matrix

$$
\begin{aligned}
T_{f i}= & \tilde{V}_{\tau \sigma}\left(\boldsymbol{q}^{*}\right)\left\langle\mu_{f}, n\right| \boldsymbol{\tau}_{0} \boldsymbol{\sigma}_{0}\left|\mu_{i}, p\right\rangle \\
& \cdot\left\langle\Phi_{B}\right| \sum_{k} \boldsymbol{\tau}_{k} \boldsymbol{\sigma}_{k} \mathrm{e}^{-\mathrm{i} \boldsymbol{q}^{*} \cdot \boldsymbol{r}_{k}}\left|\Phi_{A}\right\rangle
\end{aligned}
$$

Calculation of the isospin part

$$
\boldsymbol{\tau}_{0} \cdot \boldsymbol{\tau}_{k}=t_{0}^{+} t_{k}^{-}+t_{0}^{-} t_{k}^{+}+\tau_{z, 0} \tau_{z, k}
$$

thus

$$
\langle n| \boldsymbol{\tau}_{0} \cdot \boldsymbol{\tau}_{k}|p\rangle=t_{k}^{-}
$$

The T-matrix is now written as

$$
\begin{aligned}
T_{f i} & =\tilde{V}_{\tau \sigma}\left(\boldsymbol{q}^{*}\right)\left\langle\mu_{f}\right| \boldsymbol{\sigma}_{0}\left|\mu_{i}\right\rangle \\
& \cdot\left\langle\Phi_{B}\right| \sum_{k} t_{k}^{-} \boldsymbol{\sigma}_{k} \mathrm{e}^{-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}_{k}}\left|\Phi_{A}\right\rangle \\
& =\tilde{V}_{\tau \sigma}\left(\boldsymbol{q}^{*}\right) \sum_{a}\left[\sigma_{a, 0}\right]_{\mu_{f}, \mu_{i}} F_{B A}^{(-, a)}\left(\boldsymbol{q}^{*}\right)
\end{aligned}
$$

where $(a=x, y, z)$ and

$$
F_{B A}^{(-, a)}(\boldsymbol{q})=\left\langle\Phi_{B}\right| \sum_{k} t_{k}^{-} \sigma_{a, k} \mathrm{e}^{-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}_{k}}\left|\Phi_{A}\right\rangle
$$

Calculation of the differential cross section

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =K\left|\tilde{V}_{\tau \sigma}\left(\boldsymbol{q}^{*}\right)\right|^{2} \\
& \times \sum_{\mu_{f}} \frac{1}{2} \sum_{\mu_{i}} \sum_{a b}\left\langle\mu_{f}\right| \sigma_{a, 0}\left|\mu_{i}\right\rangle^{*}\left\langle\mu_{f}\right| \sigma_{b, 0}\left|\mu_{i}\right\rangle \\
& \times\left\langle\Phi_{B}\right| \sum_{k} t_{k}^{-} \sigma_{a, k} \mathrm{e}^{-\mathrm{i} \boldsymbol{q}^{*} \cdot \boldsymbol{r}_{k}}\left|\Phi_{A}\right\rangle^{*} \\
& \times\left\langle\Phi_{B}\right| \sum_{k} t_{k}^{-} \sigma_{b, k} \mathrm{e}^{-\mathrm{i} \boldsymbol{q}^{*} \cdot \boldsymbol{r}_{k}}\left|\Phi_{A}\right\rangle \\
& =K\left|\tilde{V}_{\tau \sigma}\left(\boldsymbol{q}^{*}\right)\right|^{2} \frac{1}{2} \sum_{a b} \operatorname{Tr}\left[\sigma_{a} \sigma_{b}\right] \\
& \times\left\langle\Phi_{B}\right| \sum_{k} t_{k}^{-} \sigma_{a, k} \mathrm{e}^{-\mathrm{i} \boldsymbol{q}^{*} \cdot \boldsymbol{r}_{k}}\left|\Phi_{A}\right\rangle^{*} \\
& \times\left\langle\Phi_{B}\right| \sum_{k} t_{k}^{-} \sigma_{b, k} \mathrm{e}^{-\mathrm{i} \boldsymbol{q}^{*} \cdot \boldsymbol{r}_{k}}\left|\Phi_{A}\right\rangle \\
& =K\left|\tilde{V}_{\tau \sigma}\left(\boldsymbol{q}^{*}\right)\right|^{2} \\
& \left.\times \sum_{a}\left|\left\langle\Phi_{B}\right| \sum_{k} t_{k}^{-} \sigma_{a, k} \mathrm{e}^{-\mathrm{i} \boldsymbol{q}^{*} \cdot \boldsymbol{r}_{k}}\right| \Phi_{A}\right\rangle\left.\right|^{2}
\end{aligned}
$$

Summing up the calculation, we get

- T-matrix

$$
T_{f i}=\tilde{V}_{\tau \sigma}\left(\boldsymbol{q}^{*}\right) \sum_{a}\left[\sigma_{a}\right]_{\mu_{f}, \mu_{i}} F_{B A}^{(-, a)}\left(\boldsymbol{q}^{*}\right)
$$

- Isovector (IV) spin-vector (SV) transition form factor

$$
F_{B A}^{(\pm, a)}\left(\boldsymbol{q}^{*}\right)=\left\langle\Phi_{B}\right| \tilde{\rho}_{a}^{(\pm)}\left(\boldsymbol{q}^{*}\right)\left|\Phi_{A}\right\rangle
$$

- IV-SV transition density

$$
\tilde{\rho}_{a}^{(\pm)}(\boldsymbol{q})=\sum_{k} t_{k}^{ \pm} \sigma_{a, k} \mathrm{e}^{-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}_{k}}
$$

- Differential cross section

$$
\frac{d \sigma}{d \Omega}=K\left|\tilde{V}_{\tau \sigma}\left(\boldsymbol{q}^{*}\right)\right|^{2} \sum_{a}\left|F_{B A}^{(-, a)}\left(\boldsymbol{q}^{*}\right)\right|^{2}
$$

The reaction part and the structure part are factorized again!

2.2.3 Case 2

- Interaction

$$
\begin{aligned}
V & =\sum_{k}\left(\boldsymbol{\tau}_{0} \cdot \boldsymbol{\tau}_{k}\right) V_{\tau}\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{k}\right) \\
& +\sum_{k}\left(\boldsymbol{\tau}_{0} \cdot \boldsymbol{\tau}_{k}\right)\left(\boldsymbol{\sigma}_{0} \cdot \boldsymbol{\sigma}_{k}\right) V_{\tau \sigma}\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{k}\right)
\end{aligned}
$$

- T-matrix

$$
\begin{aligned}
T_{f i} & =\tilde{V}_{\tau}\left(\boldsymbol{q}^{*}\right) \delta_{\mu_{f}, \mu_{i}} F_{B A}^{(-)}\left(\boldsymbol{q}^{*}\right) \\
& +\tilde{V}_{\tau \sigma}\left(\boldsymbol{q}^{*}\right) \sum_{a}\left[\sigma_{a}\right]_{\mu_{f}, \mu_{i}} F_{B A}^{(-, a)}\left(\boldsymbol{q}^{*}\right)
\end{aligned}
$$

- Isovector (IV) spin-scalar (SS) transition form factor

$$
F_{B A}^{(\pm)}(\boldsymbol{q})=\left\langle\Phi_{B}\right| \tilde{\rho}^{ \pm}(\boldsymbol{q})\left|\Phi_{A}\right\rangle
$$

- IV-SS transition density

$$
\tilde{\rho}^{ \pm}(\boldsymbol{q})=\sum_{k} t_{k}^{ \pm} \mathrm{e}^{-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}_{k}}
$$

How about the interference between the IV-SS and IV-SV parts ?

$$
\begin{aligned}
\text { Interference term } & \propto \sum_{\mu_{f}} \frac{1}{2} \sum_{\mu_{i}} \delta_{\mu_{f}, \mu_{i}}\left[\sigma_{a}\right]_{\mu_{f}, \mu_{i}} \cdots \\
& =\frac{1}{2} \operatorname{Tr}\left[\sigma_{a}\right] \cdots=0
\end{aligned}
$$

The sum of the spin z-components $\frac{1}{2} \sum_{\mu_{f}} \sum_{\mu_{i}}$ is crucial to cut the interference term.
This is a characteristic of PWBA!

- Differential cross section

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\frac{\mu_{i} \mu_{f}}{(2 \pi)^{2}} \frac{k_{f}}{k_{i}}\left\{\left|\tilde{V}_{\tau}\left(\boldsymbol{q}^{*}\right)\right|^{2}\left|F_{B A}^{(-)}\left(\boldsymbol{q}^{*}\right)\right|^{2}\right. \\
& \left.+\left|\tilde{V}_{\tau \sigma}\left(\boldsymbol{q}^{*}\right)\right|^{2} \sum_{a}\left|F_{B A}^{(-), a}\left(\boldsymbol{q}^{*}\right)\right|^{2}\right\}
\end{aligned}
$$

2.2.4. \quad Special case $\left(\boldsymbol{q}^{*}=0\right)$

At $\boldsymbol{q}^{*}=0$, the structure parts become
(1) Transition strength to the Isobaric Analogue State (IAS)

$$
\begin{aligned}
B\left(\mathrm{IAS}^{ \pm}: A \rightarrow B\right) & \left.=\left|\left\langle\Phi_{B}\right| \sum_{k} t_{k}^{ \pm}\right| \Phi_{A}\right\rangle\left.\right|^{2} \\
& =\left|F_{B A}^{(\pm)}\left(\boldsymbol{q}^{*}=0\right)\right|^{2}
\end{aligned}
$$

(2) Gamow-Teller (GT) transition strength

$$
\begin{aligned}
B\left(\mathrm{GT}^{ \pm}: A \rightarrow B\right) & \left.=\sum_{a}\left|\left\langle\Phi_{B}\right| \sum_{k} t_{k}^{-} \sigma_{a, k}\right| \Phi_{A}\right\rangle\left.\right|^{2} \\
& =\sum_{a}\left|F_{B A}^{(\pm, a)}\left(\boldsymbol{q}^{*}=0\right)\right|^{2}
\end{aligned}
$$

\bigcirc These are the key examples to extract structure information from reactions.
\bigcirc But can we get the form factors at $\boldsymbol{q}^{*}=0$?
Unfortunately No! in general. We need tricks.

2.3 Reaction of composite particles

- Interaction

$$
\begin{aligned}
V & =\sum_{j \in a} \sum_{k \in A} V\left(\boldsymbol{r}_{j}-\boldsymbol{r}_{k}\right) \\
& =\sum_{j \in a} \sum_{k \in A} \int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}} \tilde{V}(\boldsymbol{p}) \mathrm{e}^{\mathrm{i} \boldsymbol{p} \cdot\left(\boldsymbol{r}_{j}^{\prime}+\boldsymbol{R}-\boldsymbol{r}_{k}\right)}
\end{aligned}
$$

Take coordinates

$$
\boldsymbol{r}_{j}=\boldsymbol{r}_{j}^{\prime}+\boldsymbol{R}
$$

Plane waves of the relative motion

$$
\phi_{i}=\mathrm{e}^{\mathrm{i} \boldsymbol{k}_{i} \cdot \boldsymbol{R}}, \quad \phi_{f}=\mathrm{e}^{\mathrm{i} \boldsymbol{k}_{f} \cdot \boldsymbol{R}}
$$

Carry out the integration over \boldsymbol{R}, we get

$$
\begin{aligned}
T_{f i} & =\tilde{V}\left(\boldsymbol{q}^{*}\right)\left\langle\Phi_{b}\right| \sum_{j \in a} \mathrm{e}^{\mathrm{i} \boldsymbol{q}^{*} \cdot \boldsymbol{r}_{j}^{\prime}}\left|\Phi_{a}\right\rangle \\
& \times \quad\left\langle\Phi_{B}\right| \sum_{k \in A} \mathrm{e}^{-\mathrm{i} \boldsymbol{q}^{*} \cdot \boldsymbol{r}_{k}}\left|\Phi_{A}\right\rangle
\end{aligned}
$$

We reach the formulas

- T-matrix

$$
T_{f i}=\tilde{V}\left(\boldsymbol{q}^{*}\right) F_{b a}\left(-\boldsymbol{q}^{*}\right) F_{B A}\left(\boldsymbol{q}^{*}\right)
$$

- Transition form factors

$$
\begin{aligned}
F_{b a}(\boldsymbol{q}) & =\left\langle\Phi_{b}\right| \sum_{j \in a} \mathrm{e}^{-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}_{j}^{\prime}}\left|\Phi_{a}\right\rangle \\
F_{B A}(\boldsymbol{q}) & =\left\langle\Phi_{B}\right| \sum_{k \in A} \mathrm{e}^{-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}_{k}}\left|\Phi_{A}\right\rangle
\end{aligned}
$$

- Ddifferential cross section

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\frac{\mu_{i} \mu_{f}}{(2 \pi)^{2}} \frac{k_{f}}{k_{i}}\left|\tilde{V}\left(\boldsymbol{q}^{*}\right)\right|^{2} \quad \text { (reaction part) } \\
& \times\left|F_{b a}\left(-\boldsymbol{q}^{*}\right)\right|^{2}\left|F_{B A}\left(\boldsymbol{q}^{*}\right)\right|^{2} \quad \text { (structure part) }
\end{aligned}
$$

2.4 Rearrangement collision

Consider a reaction

$$
A(d, p) B
$$

Assume

- A is inert core.
- Neglect the spins
- Interaction

$$
V=V_{p n}\left(\boldsymbol{r}_{p}-\boldsymbol{r}_{n}\right)
$$

Use the coordinates

$$
\boldsymbol{r}=\boldsymbol{r}_{p}-\boldsymbol{r}_{n}, \quad \boldsymbol{R}=\frac{\boldsymbol{r}_{p}+\boldsymbol{r}_{n}}{2}
$$

Wave functions

$$
\begin{array}{rll}
\phi_{i} & =\mathrm{e}^{\mathrm{i} \boldsymbol{k}_{i} \cdot \boldsymbol{R}}, & \phi_{f}=\mathrm{e}^{\mathrm{i} \boldsymbol{k}_{f} \cdot \boldsymbol{r}_{p}} \\
\Phi_{a}=\phi_{d}(\boldsymbol{r}), & & \Phi_{B}=\Phi_{A} \psi_{n}\left(\boldsymbol{r}_{n}\right)
\end{array}
$$

T-matrix

$$
\begin{aligned}
T_{f i} & =\int d^{3} \boldsymbol{r}_{p} \int d^{3} \boldsymbol{r}_{n}\left\{\mathrm{e}^{-\mathrm{i} \boldsymbol{k}_{f} \cdot \boldsymbol{r}_{p}} \psi_{n}^{*}\left(\boldsymbol{r}_{n}\right)\right\} \\
& \times V_{p n}(\boldsymbol{r})\left\{\phi_{d}(\boldsymbol{r}) \mathrm{e}^{\mathrm{i} \boldsymbol{k}_{i} \cdot \boldsymbol{R}}\right\}
\end{aligned}
$$

Fourier transform $V_{p n}(\boldsymbol{r}) \phi_{d}(\boldsymbol{r})$

$$
V_{p n}(\boldsymbol{r}) \phi_{d}(\boldsymbol{r})=\int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}} D(\boldsymbol{p}) \mathrm{e}^{\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{r}}
$$

The T-matrix becomes

$$
\begin{aligned}
T_{f i} & =\int d^{3} \boldsymbol{r}_{p} \int d^{3} \boldsymbol{r}_{n} \int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}} D(\boldsymbol{p}) \\
& \times \mathrm{e}^{-\mathrm{i} \boldsymbol{k}_{f} \cdot \boldsymbol{r}_{p}} \psi_{n}^{*}\left(\boldsymbol{r}_{n}\right) \mathrm{e}^{\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{r}} \mathrm{e}^{\mathrm{i} \boldsymbol{k}_{i} \cdot \boldsymbol{R}} \\
& =\int d^{3} \boldsymbol{r}_{p} \int d^{3} \boldsymbol{r}_{n} \int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}} D(\boldsymbol{p}) \\
& \times \mathrm{e}^{-\mathrm{i} \boldsymbol{k}_{f} \cdot \boldsymbol{r}_{p}} \psi_{n}^{*}\left(\boldsymbol{r}_{n}\right) \mathrm{e}^{\mathrm{i} \boldsymbol{p} \cdot\left(\boldsymbol{r}_{p}-\boldsymbol{r}_{n}\right)} \mathrm{e}^{\mathrm{i} \boldsymbol{k}_{i} \cdot\left(\boldsymbol{r}_{p}+\boldsymbol{r}_{n}\right) / 2} \\
& =D\left(\boldsymbol{k}_{f}-\frac{\boldsymbol{k}_{i}}{2}\right) \int d^{3} \boldsymbol{r}_{n} \psi_{n}^{*}\left(\boldsymbol{r}_{n}\right) \mathrm{e}^{-\mathrm{i}\left(\boldsymbol{k}_{f}-\boldsymbol{k}_{i}\right) \cdot \boldsymbol{r}_{n}} \\
& =D\left(\boldsymbol{k}_{f}-\frac{\boldsymbol{k}_{i}}{2}\right) \psi_{n}^{*}\left(-\boldsymbol{q}^{*}\right)
\end{aligned}
$$

- Differential cross section

$$
\frac{d \sigma}{d \Omega}=K\left|D\left(\boldsymbol{k}_{f}-\frac{\boldsymbol{k}_{i}}{2}\right)\right|^{2}\left|\psi_{n}\left(-\boldsymbol{q}^{*}\right)\right|^{2}
$$

\bigcirc We may get information about the neutron wave function in B.
[Comment 1]

- Zero range approximation

Has been widely used for (d, p) reaction

$$
V_{p n}(\boldsymbol{r}) \phi_{d}(\boldsymbol{r})=D_{0} \delta(\boldsymbol{r})
$$

means

$$
D(\boldsymbol{p})=D_{0}
$$

Then

$$
\frac{d \sigma}{d \Omega}=K D_{0}^{2}\left|\psi_{n}(-\boldsymbol{q})\right|^{2}
$$

[Just for fun]

Schrödinger equation for the deuteron

$$
\left(-\frac{\boldsymbol{\nabla}_{\boldsymbol{r}}^{2}}{m_{N}}+V(\boldsymbol{r})\right) \phi_{d}(\boldsymbol{r})=-\epsilon_{d} \phi_{d}(\boldsymbol{r})
$$

ϵ_{d} : Binding energy of the deuteron
Fourier transform of $V(\boldsymbol{r}) \phi(\boldsymbol{r})$

$$
\begin{aligned}
D(\boldsymbol{p}) & =\int d^{3} \boldsymbol{r} V(\boldsymbol{r}) \phi_{d}(\boldsymbol{r}) \mathrm{e}^{-\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{r}} \\
& \left.=\int d^{3} \boldsymbol{r}\left(\frac{\boldsymbol{\nabla}_{\boldsymbol{r}}^{2}}{m_{N}}-\epsilon_{d}\right)\right) \phi_{d}(\boldsymbol{r}) \mathrm{e}^{-\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{r}} \\
& =-\left(\frac{\boldsymbol{p}^{2}}{m_{N}}+\epsilon_{d}\right) \phi_{d}(\boldsymbol{p})
\end{aligned}
$$

2.5 Exchange processes

2.5.1. NN scattering

Direct

Exchange

Consider a nucleon-nucleon (NN) scattering

$$
p+p \rightarrow p+p
$$

NN scattering t-matrix

$$
t_{N N}=t_{N N}^{D}-t_{N N}^{E}
$$

We cannot distinguish p_{0} and p_{1}
Ignore spin and isospin for simplicity.
Just learn the essence.
(1) Direct process

$$
\begin{aligned}
t_{N N}^{D} & =\left\langle\mathrm{e}^{\mathrm{i} \boldsymbol{k}_{f} \cdot \boldsymbol{r}_{0}} \mathrm{e}^{-\mathrm{i} \boldsymbol{k}_{f} \cdot \boldsymbol{r}_{1}}\right| V\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{1}\right)\left|\mathrm{e}^{\mathrm{i} \boldsymbol{k}_{i} \cdot \boldsymbol{r}_{0}} \mathrm{e}^{-\mathrm{i} \boldsymbol{k}_{i} \cdot \boldsymbol{r}_{1}}\right\rangle \\
& =\tilde{V}\left(\boldsymbol{q}^{*}\right)
\end{aligned}
$$

(2) Exchange process

$$
\begin{aligned}
t_{N N}^{E} & =\left\langle\mathrm{e}^{\mathrm{i} \boldsymbol{k}_{f} \cdot \boldsymbol{r}_{1}} \mathrm{e}^{-\mathrm{i} \boldsymbol{k}_{f} \cdot \boldsymbol{r}_{0}}\right| V\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{1}\right)\left|\mathrm{e}^{\mathrm{i} \boldsymbol{k}_{i} \cdot \boldsymbol{r}_{0}} \mathrm{e}^{-\mathrm{i} \boldsymbol{k}_{i} \cdot \boldsymbol{r}_{1}}\right\rangle \\
& =\tilde{V}\left(\boldsymbol{Q}^{*}\right)
\end{aligned}
$$

with

$$
\boldsymbol{Q}^{*}=-\left(\boldsymbol{k}_{f}+\boldsymbol{k}_{i}\right)=-\left(2 \boldsymbol{k}_{i}+\boldsymbol{q}\right)
$$

- Pseudo-potential approximation

High energy forward scattering

$$
q^{*} \ll 2 k_{i}
$$

We may use an approximation

$$
t_{N N}^{E}=\tilde{V}\left(\boldsymbol{Q}^{*}\right) \approx \tilde{V}\left(-2 \boldsymbol{k}_{i}\right)
$$

$\tilde{V}\left(-2 \boldsymbol{k}_{i}\right)$: a constant with respect to \boldsymbol{q}^{*}, determined by the initial state

Now we can calculate the full $t_{N N}$
by only the direct term of the potential

$$
V=V\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{1}\right)-V_{0} \delta\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{1}\right)
$$

where

$$
V_{0}=\tilde{V}\left(-2 \boldsymbol{k}_{i}\right)
$$

The 2nd term : Pseudo-potential

This prescription is very useful to represent the exchange effects by the direct processes via a local potential !

O In realistic cases, we must consider

- spins, isospins
- tensor forces
- velocity dependent forces etc.

2.5.2. Nucleon-nucleus scattering

 (NA scattering)

Consider the exchange process in

$$
A\left(p, p^{\prime}\right) A^{*}
$$

Ignore spin and isospin.

Initial state

$$
|i\rangle=\int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}}\left(\boldsymbol{p}\left|\Phi_{A}\right\rangle \mathrm{e}^{\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{r}_{k}} \mathrm{e}^{\mathrm{i} \boldsymbol{k}_{i} \cdot \boldsymbol{r}_{0}}\right.
$$

- Final state

$$
|f\rangle=\int \frac{d^{3} \boldsymbol{p}^{\prime}}{(2 \pi)^{3}}\left(\boldsymbol{p}^{\prime}\left|\Phi_{A^{*}}\right\rangle \mathrm{e}^{\mathrm{i} \boldsymbol{p}^{\prime} \cdot \boldsymbol{r}_{0}} \mathrm{e}^{\mathrm{i} \boldsymbol{k}_{f} \cdot \boldsymbol{r}_{k}}\right.
$$

- Interaction

$$
V\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{k}\right)=\int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}} \tilde{V}(\boldsymbol{p}) \mathrm{e}^{\mathrm{i} \boldsymbol{p} \cdot\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{k}\right)}
$$

Use the momentum conservation at each vertex.

T-matrix for the exchange process is now written as

$$
\begin{aligned}
& T_{f i}^{\mathrm{E}}=-\langle f| V\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{k}\right)|i\rangle \\
= & \left.-\int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}}\left\langle\phi_{A}^{*}\right| \boldsymbol{p}-\boldsymbol{q}^{*}\right) \tilde{V}\left(\boldsymbol{p}-\boldsymbol{q}^{*}-\boldsymbol{k}_{i}\right)\left(\boldsymbol{p}\left|\phi_{A}\right\rangle\right.
\end{aligned}
$$

Noting

$$
p, p^{\prime} \leq k_{F} \approx 1.4 \mathrm{fm}^{-1}
$$

Momentum of 300 MeV proton

$$
k=\sqrt{E_{p}^{2}-m_{p}^{2}}=808 \mathrm{MeV} \approx 4.0 \mathrm{fm}^{-1}
$$

We may take an approximation

$$
\tilde{V}\left(\boldsymbol{p}-\boldsymbol{q}^{*}-\boldsymbol{k}_{i}\right)=\tilde{V}\left(\boldsymbol{p}^{\prime}-\boldsymbol{k}_{i}\right) \approx \tilde{V}\left(-\boldsymbol{k}_{i}\right)
$$

which is a constant for the given \boldsymbol{k}_{i}.
Now the T-matrix for the exchange process becomes

$$
\begin{aligned}
T_{f i}^{\mathrm{E}} & \left.=-\tilde{V}\left(-\boldsymbol{k}_{i}\right) \int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}}\left\langle\phi_{A}^{*}\right| \boldsymbol{p}-\boldsymbol{q}^{*}\right)\left(\boldsymbol{p}\left|\phi_{A}\right\rangle\right. \\
& =-\tilde{V}\left(-\boldsymbol{k}_{i}\right)\left\langle\phi_{A^{*}}\right| \sum_{k} \mathrm{e}^{-\mathrm{i} \boldsymbol{q}^{*} \cdot \boldsymbol{r}_{k}}\left|\phi_{A}\right\rangle \\
& =-\tilde{V}\left(-\boldsymbol{k}_{i}\right) F_{A^{*} A}\left(\boldsymbol{q}^{*}\right)
\end{aligned}
$$

Use the interaction with pseudo-potential

$$
V=V\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{1}\right)-\tilde{V}\left(-\boldsymbol{k}_{i}\right) \delta\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{1}\right)
$$

and calculate only the direct term.
We get the full T-matrix as

$$
T_{f i}=\left[\tilde{V}(\boldsymbol{q} *)-\tilde{V}\left(-\boldsymbol{k}_{i}\right)\right] F_{A^{*} A}\left(\boldsymbol{q}^{*}\right)
$$

In this approximation

$$
T_{f i} \propto F_{A^{*} A}\left(\boldsymbol{q}^{*}\right)
$$

Very useful!

[Comment]

- \boldsymbol{k}_{i} in the previous subsection is
the incident momentum
in the cm frame of the NN system,
- \boldsymbol{k}_{i} here is the incident momentum
in the cm frame of the NA system
Note

$$
2 k_{i}^{\mathrm{NN}}=k_{i}^{\mathrm{NA}} \approx k_{i, \mathrm{lab}} \quad \text { for } m_{A} \rightarrow \infty
$$

For a central potential

$$
\tilde{V}(\boldsymbol{p})=\tilde{V}(p)
$$

Thus we can set

$$
\begin{aligned}
& \left.\left.\tilde{V}\left(-2 \boldsymbol{k}_{i}^{N N}\right)\right)=\tilde{V}\left(2 k_{i}^{N N}\right)\right) \\
\approx & \left.\left.\tilde{V}\left(-\boldsymbol{k}_{i}^{N A}\right)\right)=\tilde{V}\left(k_{i}^{N A}\right)\right) \\
\approx & \left.\tilde{V}\left(k_{i, \mathrm{lab}}\right)\right)
\end{aligned}
$$

IV PWBA II

- Reaction to Continuum

1. Simplest reaction

Consider the reaction

$$
d(p, n) p p
$$

Simplifications

- Ignore spins, isospins, Pauli principle,
- $m_{p}=m_{n}=m_{N}$
- Consider only the inclusive cross section

1.1. Formalism

Use the coordinate system

$$
\begin{aligned}
& \boldsymbol{r}_{0}+\boldsymbol{r}_{1}+\boldsymbol{r}_{2}=0 \\
& \boldsymbol{r}_{0}-\frac{\boldsymbol{r}_{1}+\boldsymbol{r}_{2}}{2}=\boldsymbol{R} \\
& \boldsymbol{r}_{1}-\boldsymbol{r}_{2}=\boldsymbol{r}
\end{aligned}
$$

Final state momenta $\left(\boldsymbol{p}_{0}, \boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)$

$$
\begin{aligned}
& \boldsymbol{p}_{0}=\boldsymbol{k}_{f} \\
& \boldsymbol{P}_{\mathrm{res}}=\boldsymbol{p}_{1}+\boldsymbol{p}_{2}=-\boldsymbol{k}_{f}, \\
& \frac{\boldsymbol{p}_{1}-\boldsymbol{p}_{2}}{2}=\boldsymbol{\kappa}
\end{aligned}
$$

Initial state

$$
|i\rangle=\phi_{d}(\boldsymbol{r}) \mathrm{e}^{\mathrm{i} \boldsymbol{k}_{i} \cdot \boldsymbol{R}}
$$

Final state

$$
|f\rangle=\mathrm{e}^{\mathrm{i} \boldsymbol{k}_{f} \cdot \boldsymbol{R}} \phi_{p p}(\boldsymbol{\kappa} ; \boldsymbol{r})
$$

Asymptotic form

$$
\phi_{p p}(\boldsymbol{\kappa} ; \boldsymbol{r}) \sim \mathrm{e}^{\mathrm{i} \kappa \cdot \boldsymbol{r}}
$$

ϕ_{d} : deuteron wave function
$\phi_{p p}$: wave function of the final $p p$ system

- Interaction

$$
\begin{aligned}
V\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{1}\right) & =\int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}} \tilde{V}_{p n}(\boldsymbol{p}) \mathrm{e}^{\mathrm{i} \boldsymbol{p} \cdot\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{1}\right)} \\
& =\int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}} \tilde{V}_{p n}(\boldsymbol{p}) \mathrm{e}^{\mathrm{i} \boldsymbol{p} \cdot\left(\boldsymbol{R}-\frac{1}{2} \boldsymbol{r}\right)}
\end{aligned}
$$

- T-matrix

$$
\begin{aligned}
T_{f i} & =\langle f| V|i\rangle \\
& =\tilde{V}\left(\boldsymbol{q}^{*}\right) \int d^{3} \boldsymbol{r} \phi_{p p}^{*}(\boldsymbol{\kappa} ; \boldsymbol{r}) \phi_{d}(\boldsymbol{r}) \mathrm{e}^{-\mathrm{i} \frac{\boldsymbol{q}^{*}}{2} \cdot \boldsymbol{r}} \\
& =\tilde{V}\left(\boldsymbol{q}^{*}\right) F_{p p, d}\left(\boldsymbol{\kappa} ; \frac{\boldsymbol{q}^{*}}{2}\right)
\end{aligned}
$$

- Transition form factor

$$
F_{p p, d}(\boldsymbol{\kappa} ; \boldsymbol{q})=\int d^{3} \boldsymbol{r} \phi_{p p}^{*}(\boldsymbol{\kappa} ; \boldsymbol{r}) \phi_{d}(\boldsymbol{r}) \mathrm{e}^{-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}}
$$

- Momentum transfer to the internal motion

$$
\boldsymbol{q}=\frac{\boldsymbol{q}^{*}}{2}
$$

[Comment]

On the center of mass problem
Why differs

$$
\left\langle\phi_{p p}\right| \mathrm{e}^{-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}}\left|\phi_{d}\right\rangle \quad \text { vs. } \quad\left\langle\phi_{p p}\right| \mathrm{e}^{-\mathrm{i} \boldsymbol{q}^{*} \cdot \boldsymbol{r}_{1}}\left|\phi_{d}\right\rangle
$$

We must take the replacement

$$
\boldsymbol{r}_{1} \longrightarrow \boldsymbol{r}_{1}-\frac{\boldsymbol{r}_{1}+\boldsymbol{r}_{2}}{2}=\frac{\boldsymbol{r}}{2}
$$

then we get

$$
\mathrm{e}^{-\mathrm{i} \boldsymbol{q}^{*} \cdot \boldsymbol{r}_{1}} \longrightarrow \mathrm{e}^{-\mathrm{i} \boldsymbol{q}^{*} \cdot \frac{r}{2}}=\mathrm{e}^{-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}}, \quad\left(\boldsymbol{q}=\frac{\boldsymbol{q}^{*}}{2}\right)
$$

$$
\begin{aligned}
\frac{d^{2} \sigma}{d \omega^{*} d \Omega} & =K\left|\tilde{V}\left(\boldsymbol{q}^{*}\right)\right|^{2} \\
& \times \int \frac{d^{3} \boldsymbol{\kappa}}{(2 \pi)^{3}}\left|F_{p p, d}\left(\boldsymbol{\kappa} ; \frac{\boldsymbol{q}^{*}}{2}\right)\right|^{2} \delta\left(\omega^{*}-\bar{\omega}^{*}\right)
\end{aligned}
$$

where

$$
\bar{\omega}^{*}=\frac{m_{p}^{2}-m_{d}^{2}-m_{n}^{2}+M_{p p}^{2}}{2 \sqrt{s}}
$$

with the invariant mass of the $p p$ system

$$
M_{p p}^{2}=\left(E_{1}^{*}+E_{2}^{*}\right)^{2}-k_{f}^{2}
$$

- Excitation Energy

Assume

Invariant mass $=$ Mass + Internal energy

we may write

$$
M_{p p}=2 m_{p}+\frac{\kappa^{2}}{m_{p}}=m_{d}+E_{x}
$$

E_{x} : Excitation energy of the 2 N system (with respect to the target ground state)

Then we get

$$
\begin{aligned}
\bar{\omega}^{*} & =\frac{m_{p}^{2}-m_{d}^{2}-m_{n}^{2}+m_{d}^{2}+2 m_{d} E_{x}+E_{x}^{2}}{2 \sqrt{s}} \\
& \approx \frac{m_{d}}{\sqrt{s}} E_{x}
\end{aligned}
$$

Introduce

$$
\omega=\frac{\sqrt{s}}{m_{d}} \omega^{*}
$$

which means
Energy transfer to the internal motion

- Double differential cross section

$$
\begin{aligned}
\frac{d^{2} \sigma}{d \omega^{*} d \Omega} & =K \frac{\sqrt{s}}{m_{d}}\left|\tilde{V}\left(\boldsymbol{q}^{*}\right)\right|^{2} \\
& \times \int \frac{d^{3} \boldsymbol{\kappa}}{(2 \pi)^{3}}\left|F_{p p, d}(\boldsymbol{\kappa} ; \boldsymbol{q})\right|^{2} \delta\left(\omega-E_{x}\right)
\end{aligned}
$$

with

$$
E_{x}=2 m_{p}-m_{d}+\frac{\kappa^{2}}{m_{p}}
$$

With spins, isospins, antisymmetrization, etc., the formula is more complicate.
See A. Itabashi, K. Aizawa, and M. Ichimura, Prog. Theoret. Phys, 91 91(1994)

1.2. Practical calculation

(1) Fix ω^{*}, then $\Longrightarrow \omega \Longrightarrow E_{x} \Longrightarrow \bar{\kappa}$
(2) Solve the Schrödinger equations

- for the deuteron

$$
H_{2 N} \phi_{d}(\boldsymbol{r})=\left(2 m_{N}-\epsilon_{d}\right) \phi_{d}(\boldsymbol{r})
$$

- for the $p p$ system

$$
H_{2 N} \phi_{p p}^{*}(\overline{\boldsymbol{\kappa}} ; \boldsymbol{r})=\left(2 m_{N}+\frac{\kappa^{2}}{m_{p}}\right) \phi_{p p}^{*}(\boldsymbol{\kappa} ; \boldsymbol{r})
$$

for low partial waves $(\ell \leq 2)$.
Use the plane wave for higher partial waves
(3) Calculate the form factor

$$
F_{p p, d}(\boldsymbol{\kappa} ; \boldsymbol{q})=\int d^{3} \boldsymbol{r} \phi_{p p}^{*}(\boldsymbol{\kappa} ; \boldsymbol{r}) \phi_{d}(\boldsymbol{r}) \mathrm{e}^{-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}}
$$

by the partial wave expansion.

図 1 Cross sections and polarization observables D_{i} of the ${ }^{2} \mathrm{H}(p, n)$ reaction at $T_{p}=345 \mathrm{MeV}$. T. Wakasa et al., Phys. Rev. C69 (2004) 044602

2. Response function formalism

The above method works for very limited cases, such as a few nucleon target $d,{ }^{3} \mathrm{He}$.

Let's consider a method applicable for more general cases.

$A+N \longrightarrow N^{\prime}+X$ (anything)
n_{r} : number of outgoing clusters in the residual system X.

Take only the direct term
(treat the exchange term
by the pseudo-potential.)

T-matrix is given by

$$
T_{f i}=\tilde{V}\left(\boldsymbol{q}^{*}\right)\left\langle\Phi_{X}\right| \tilde{\rho}\left(\boldsymbol{q}^{*}\right)\left|\Phi_{A}\right\rangle
$$

with the transition density

$$
\tilde{\rho}\left((\boldsymbol{p})=\sum_{k=1}^{A} \mathrm{e}^{-\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{r}_{k}}\right.
$$

X represents

$$
X=\left(n_{r}, \boldsymbol{p}_{1}, \cdots \boldsymbol{p}_{n_{r}}, \alpha\right)
$$

and $f=\left(\boldsymbol{k}^{\prime}, X\right)$
α : the quantum number other than
$\left(n_{r}, \boldsymbol{p}_{1}, \cdots \boldsymbol{p}_{n_{r}}\right)$

Use the notation Σ_{X}, which means
$\sum_{X}=\sum_{n_{r}, \alpha} \int \frac{d^{3} \boldsymbol{p}_{1}^{*}}{(2 \pi)^{3}} \cdots \frac{d^{3} \boldsymbol{p}_{n_{r}}^{*}}{(2 \pi)^{3}}(2 \pi)^{3} \delta\left(\boldsymbol{k}^{\prime}+\sum_{k=1}^{n_{r}} \boldsymbol{p}_{k}^{*}\right)$

Inclusive double differential cross section is now given by

$$
\frac{d^{2} \sigma}{d \omega^{*} d \Omega}=K \sum_{X}\left|T_{f i}\right|^{2} \delta\left(\omega^{*}-\bar{\omega}^{*}\right)
$$

where

$$
\bar{\omega}^{*}=\frac{m_{N}^{2}-m_{A}^{2}-m_{N^{\prime}}^{2}+M_{X}^{2}}{2 \sqrt{s}}
$$

M_{X} : invariant mass of the system X.

Write

$$
M_{X}=m_{A}+E_{x}^{X}
$$

E_{x}^{X} : Excitation energy of the system X with respect to the target ground state.

$$
\bar{\omega}^{*} \approx \frac{m_{A}}{\sqrt{s}} E_{x}^{X}
$$

We get

Double Differential Cross Section

$$
\frac{d^{2} \sigma}{d \omega^{*} d \Omega}=K \frac{\sqrt{s}}{m_{A}} \sum_{X}\left|T_{f i}\right|^{2} \delta\left(\omega-E_{x}^{X}\right)
$$

with the energy transfer to the internal motion of X

$$
\omega=\frac{m_{A}}{\sqrt{s}} \omega^{*}
$$

Rewrite this as

$$
\frac{d^{2} \sigma}{d \omega^{*} d \Omega}=K \frac{\sqrt{s}}{m_{A}}\left|\tilde{V}\left(\boldsymbol{q}^{*}\right)\right|^{2} R_{\rho}\left(\boldsymbol{q}^{*}\right)
$$

with Response function for ρ

$$
\left.R_{\rho}\left(\omega, \boldsymbol{q}^{*}\right) \equiv \sum_{X}\left|\left\langle\Phi_{X}\right| \tilde{\rho}\left(\boldsymbol{q}^{*}\right)\right| \Phi_{A}\right\rangle\left.\right|^{2} \delta\left(\omega-E_{x}^{X}\right)
$$

\bigcirc The structure part $R_{\rho}\left(\omega, \boldsymbol{q}^{*}\right)$ is well separated!
O The question is how to calculate the infinite sum Σ_{X}.
A main theme !!!

Introduce

Hamiltonian of the system $A(=X)$

$$
H_{A} \Phi_{X}=E_{x}^{X} \Phi_{X}, \quad\left(E_{x}^{X}=0, \text { if } X=A\right)
$$

We can express the response function as

$$
\begin{aligned}
& R_{\rho}\left(\omega, \boldsymbol{q}^{*}\right) \\
= & \left.\sum_{X}\left|\left\langle\Phi_{X}\right| \tilde{\rho}\left(\boldsymbol{q}^{*}\right)\right| \Phi_{A}\right\rangle\left.\right|^{2} \delta\left(\omega-E_{x}^{X}\right) \\
= & -\frac{1}{\pi} \operatorname{Im}\left[\sum_{X}\left\langle\Phi_{A}\right| \tilde{\rho}^{\dagger}\left(\boldsymbol{q}^{*}\right)\left|\Phi_{X}\right\rangle \frac{1}{\omega-E_{x}^{X}+\mathrm{i} \eta}\right. \\
\times & \left.\left\langle\Phi_{X}\right| \tilde{\rho}\left(\boldsymbol{q}^{*}\right)\left|\Phi_{A}\right\rangle\right] \\
= & -\frac{1}{\pi} \operatorname{Im}\left[\left\langle\Phi_{A}\right| \tilde{\rho}^{\dagger}\left(\boldsymbol{q}^{*}\right) \frac{1}{\omega-H_{A}+\mathrm{i} \eta} \tilde{\rho}\left(\boldsymbol{q}^{*}\right)\left|\Phi_{A}\right\rangle\right]
\end{aligned}
$$

Σ_{X} and Φ_{X} disappeared!
Can we calculate this response function ?
3. Summary

- Inclusive double differential cross section

$$
\frac{d^{2} \sigma}{d \omega^{*} d \Omega}=K \frac{\sqrt{s}}{m_{A}}\left|\tilde{V}\left(\boldsymbol{q}^{*}\right)\right|^{2} R_{\rho}\left(\omega, \boldsymbol{q}^{*}\right)
$$

Response function

$$
\begin{aligned}
& R_{\rho}(\omega, \boldsymbol{q}) \\
& =-\frac{1}{\pi} \operatorname{Im}\left\langle\Phi_{A}\right| \tilde{\rho}^{\dagger}(\boldsymbol{q}) \frac{1}{\omega-H_{A}+\mathrm{i} \eta} \tilde{\rho}(\boldsymbol{q})\left|\Phi_{A}\right\rangle
\end{aligned}
$$

- Key points
(1) Factorization of the reaction part and the structure part.
(2) Each part depends only on the momentum transfer \boldsymbol{q}^{*} as to the spatial degree of freedom.
(3) The feature (2) is due to the fact that the interaction V is a local operator i.e $V=V\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{k}\right)$.
(4) To get reliable structure information, we must know the reliable reaction part, especially the interaction V.
(5) Infinite sum Σ_{X} is replaced by the expectation value of the target state, i.e. Response function of the one body operator.
(6) In a certain approximation such as HF, TDA, RPA, etc. these response functions are calculable as will be discussed.

[Caution]

Distinguish the three energy transfers
$\omega^{\text {lab }}$ in the lab frame
$\omega^{*} \quad$ in the cm frame
ω to the internal state
$=$ excitation energy
of the residual system, E_{x},
with respect to the target ground state

