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VII. Response Function

Here I sketch how to calculate the response

functions (Recall V. DWBA )

1. Polarization Propagator

1.1. One-body Density Operator

For unified expression, we write

ρF (r) =
∑
k
Fkδ(r − rk)

where

Fk = σ
(α)
a,k , (α = 0, 1, a = 0, x, y, z)
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1.2 Polarization Propagator

Introduce

● Polarization propagators

ΠFF ′(r, r′;ω)

≡ ⟨ΦA| ρ†F (r)
1

ω −HA + i δ
ρF ′(r′)|ΦA⟩

HA : Internal Hamiltonian of the nucleus A.

● Response Functions

We can write

RFF ′(r, r′;ω) = −1

π
Im ΠFF ′(r, r′;ω)
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2. Mean Field Approximation

2.1 Hamiltonian

This is the 0-th order approximation.

Approximate HA by

Mean Field Hamiltonian, H0

HA −→ H0 =
∑
k
ĥk − Tc.m.

ĥk : Single-particle Hamiltonian

for the k-th nucleon in A

ĥk = Tk + Um.f
k

Um.f
k : Mean field (Hartree-Fock field)
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● Single particle states

|h⟩ : occupied single particle state

|p⟩ : unoccupied single particle state

They obey

ĥ|h⟩ = ϵh|h⟩, ĥ|p⟩ = ϵp|p⟩,

h1
h2
h3

p1

p2
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2.2. Free Polarization Propagator

The polarization propagator in the mean

field approximation is called

Free polarization propagator

Π
(0)
FF ′(r, r′;ω)

= ⟨Φ(0)
A |ρ†F (r)

1

ω − (H0 − E (0)
0 ) + i δ

ρF ′(r′)|Φ(0)
A ⟩

Φ
(0)
A : Ground state of A

in the mean field approximation

H0Φ
(0)
A = E (0)

0 Φ
(0)
A
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Note the operation of the density operator

ρF ′(r′)|Φ(0)
A ⟩ = ∑

h,p
|h−1p⟩⟨h−1p|ρF ′(r′)|Φ(0)

A ⟩

the sum of 1-particle-1-hole states.

h1
h2
h3

p1

p2
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We can write

Π
(0)
FF ′(r, r′;ω) =

∑
p,h
⟨Φ(0)

A |ρ†F (r)|h−1p⟩

× 1

ω − (ϵp − ϵh) + i δ

× ⟨h−1p|ρF ′(r′)|Φ(0)
A ⟩

= ⟨Φ(0)
A |ρ†F (r)Gph(ω)ρF ′(r′)|Φ(0)

A ⟩

Here we introduced

● ph Green’s function

Gph(ω) =
∑
h,p

|h−1p⟩ 1

ω − (ϵp − ϵh) + i δ
⟨h−1p|

How to cope with the infinite sum
∑
p∈unocc ?

p runs continuously !

cf.
∑
h run only finite number of states,

and thus can be handled.
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Further manipulation

Gph(ω) =
∑
h
|h−1⟩ g(ω + ϵh)⟨h−1|

with

g(ϵ) =
∑

p∈unocc
|p⟩ 1

ϵ− ϵp + i δ
⟨p|

=
∑

p∈full
|p⟩ 1

ϵ− ϵp + i δ
⟨p|

− ∑
h
|h⟩ 1

ϵ− ϵp + i δ
⟨h|

= gsp(ϵ)−
∑
h
|h⟩ 1

ϵ− ϵh + i δ
⟨h|

where

gsp(ϵ) =
∑

p∈full
|p⟩ 1

ϵ− ϵp + i δ
⟨p|

=
1

ϵ− ĥ + i δ
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● The single particle Green’s function

gsp(ϵ) in r representation

gsp(r, r
′; ϵ) = ⟨r|gsp(ϵ)|r′⟩

= ⟨r| 1

ϵ− ĥ + i δ
|r′⟩

is known to be calculable.

● Calculation of gsp(r, r
′; ϵ)

(Ignore spins)

Angular momentum representation

gsp(r, r
′; ϵ) =

∑
lm
Ylm(Ωr)

gl(r, r
′; ϵ)

rr′
Y †
lm(Ωr′)
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The radial parts

gl(r, r
′; ϵ) =

2mN

W (fl, hl)
fl(r<; ϵ)hl(r>; ϵ)

where r< = min(r, r′), r> = max(r, r′),

fl(r; ϵ) and hl(r; ϵ) :

regular and singular solutions of the equation

− 1

2mN

d2

dr2
+

1

2mN

l(l + 1)

r2
+ Um.f(r)

ul(r; ϵ)
= ϵ ul(r; ϵ)

W (f, h) : Wronskian

W (f, h) =

∣∣∣∣∣∣∣∣
f h

f ′ h′

∣∣∣∣∣∣∣∣
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Thus

g(r, r′; ϵ) = ⟨r|g(ϵ)|r′⟩

= gsp(r, r
′; ϵ)−∑

h
ϕh(r)

1

ϵ− ϵh + i δ
ϕ∗h(r

′)

is calculable

ϕh(r) : Bound state wave function

of the state |h⟩

Now we can calculate

● Free Polarization Propagator

Π
(0)
FF ′(r, r′;ω)

=
∑
h
⟨Φ(0)

A |ρ†F (r)|h⟩g(r, r′;ω + ϵh)⟨h|ρF ′(r′)|Φ(0)
A ⟩

and get

● Free Response Function

R
(0)
FF ′(r, r′;ω) = −1

π
Im Π

(0)
FF ′(r, r′;ω)
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[Comment]

In actual calculations, various refinements

should be taken into account.

・ Spins, Isospins

・ ∆ isobar,

・ Complex mean field

(representing particle spreading width)

・ Energy-dependent mean field

・ (radial dependent) effective mass

mN −→ m∗(r)

・ Perey factor

・ Spreading widths of holes

・ Orthogonality condition

・ etc.

For details, see Manual of the program RESPQ in

http://www.nishina.riken.jp/researcher/

archive/program e.html
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3. Tamm-Dancoff Approximation

(Usually abbreviated TDA)

Consider the nuclear correlations induced

by the ph interaction Vph

● ph interaction Vph

p1 h1

p2h2

Vph =
∑
FF ′

∫
d3rd3r′ρF (r)WFF ′(r, r′)ρ†F ′(r′)
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● Polarization propagators in TDA

Take account of the correlation

=

x

+ + + ・・・

x

xx

x

x
x

x

The polarization propagator

with this correlation is given

by the solution of the equation

ΠTDA
FF ′ (r, r′) = Π

(0)
FF ′(r, r′)

+
∑

F ′′F ′′′

∫
d3r′′d3r′′′Π

(0)
FF ′′(r, r′′)

×WF ′′F ′′′(r′′, r′′′)ΠTDA
F ′′′F ′(r′′′, r′)
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4. Random Phase Approximation

– Ring approximation

( Commonly abbreviated as RPA )

More elaborated approximation.

Generalize

Free polarization propagator Π
(0)
FF ′ as

Π
(0)
FF ′(r, r′;ω)

= ⟨Φ0|ρ†F (r)
1

ω − (H0 − E0) + i δ
ρF ′(r′)|Φ0⟩

+ ⟨Φ0|ρF ′(r′)
1

−ω − (H0 − E0) + i δ
ρ†F (r)|Φ0⟩

17



● Polarization propagators in RPA

Given by solving the RPA equation

ΠRPA
FF ′ (r, r′) = Π

(0)
FF ′(r, r′)

+
∑

F ′′F ′′′

∫
d3r′′d3r′′′Π

(0)
FF ′′(r, r′′)

×WF ′′F ′′′(r′′, r′′′)ΠRPA
F ′′′F ′(r′′′, r′)

=

x

+ + + ・・・
x

xx

x
x

x
x

Once this approximation had been called

New Tamm-Dancoff Approximation
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5. Fermi Gas Model

Recall PWBA formula

d2σ

dω∗dΩ
= K

√
s

mA
|Ṽ (q∗)|2 Rρ(ω, q

∗)

Rρ(ω, q)

= −1

π
Im⟨ΦA|ρ̃†(q)

1

ω −HA + iη
ρ̃(q)|ΦA⟩

ρ̃((p) =
A∑
k=1

e−ip·rk

Let us calculate the free response function

Rρ(ω, q) in a simple model.

Fermi gas model provides the analytic form,

from which we can learn some characteristic

of the response functions.

19



● Fermi gas model

Π(0)(q, ω) =
∑
p,h
⟨Φ(0)

A |ρ̃†(q)|h−1p⟩

× 1

ω − (ϵp − ϵh) + i δ
⟨h−1p|ρ̃((q)|Φ(0)

A ⟩

=
∫ d3p

(2π)3
θ(pF − p)θ(|p− q| − pF )

ω −
(
(p−q)2

2mN
− p2

2mN

)
+ iδ

=
∫ d3p

(2π)3
θ(pF − p)θ(|p− q| − pF )

ω −
(

q2

2mN
− q·p

mN

)
+ iδ

|h⟩ = |p⟩, |p⟩ = |p− q⟩
20



The free response function

R(0)(q, ω) = −1

π
ImΠ(0)(q, ω)

Π(0)(q, ω) can analytically be calculated.

It is known as the Lindhart function.

A.L. Fetter and J.D. Walecka, Quantum Theory of

Many-particle Systems, McGraw-Hill, Inc. (1971)
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[Just for fun]

Analytical form of R(0)(q, ω)

pF : Fermi momentum

ϵF =
p2F

2mN
: Fermi energy

Set

x =
q

2pF
, y =

ω

ϵF

For 0 ≤ x ≤ 1

R(0)(q, ω)

=
mNpF
(2π)2


y
4x for y

4x < 1− x
1−(x− y

4x)
2

4x for 1− x < y
4x < 1 + x

For x > 1

R(0)(q, ω)

=
mNpF
(2π)2

1−(x− y
4x)

2

4x for x− 1 < y
4x < 1 + x
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● What spectrum R(0)(q, ω) has ?

40Ca   q=1.75 fm-1

g’NN=g’ND= g’DD = 0.6

M. Ichimura et al,  
PR 39 (1989) 1446

Peak at ωpeak =
q2

2mN
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● Whereis R(0)(q, ω) finite ?

24



● What region can we study ?

A reaction can reach very limited region.

図 1
90Zr(p, n), Tp = 300 MeV, θ = 0deg,

12C(p, n), Tp = 350 MeV, θ = 22deg

M. Ichimura, H. Sakai and T. Wakasa, Prog. Part. Mucl.

Phys. 56, 446 (2006)
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6. Relation to familiar quantities

Relation between R(q, ω) and familiar

quantities.

(1) GT strength

BGT±(ω) =
∑
X
|⟨ΦX |

∑
k
t±k σk|ΦA⟩|2δ(ω − ωX)

RGT±(q, ω) =
∑
X
|⟨ΦX |

∑
k
t±k σke

−iq·ri|ΦA⟩|2δ(ω−ωX)

Thus

BGT±(ω) = RGT±(q = 0, ω)

(2) Fermi transition strength

BF±(ω) =
∑
X
|⟨ΦX |

∑
k
t±k |ΦA⟩|2δ(ω − ωX)

RF±(q, ω) =
∑
X
|⟨ΦX |

∑
k
t±k e

−iq·ri|ΦA⟩|2δ(ω−ωX)

BF±(ω) = RF±(q = 0, ω)
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(3) E1 transition strength (> GDR)

For the case JA = 0

BE1(ω) =
∑

X∈1−
|⟨ΦX |

∑
k
tz,krk|ΦA⟩|2δ(ω−ωX)

Response Function to the 1− states

RIV1−(q, ω)

=
∑

X∈1−
|⟨ΦX |

∑
k
tz,ke

−iq·ri|ΦA⟩|2δ(ω − ωX)

=
∑

X∈1−
|⟨ΦX |

∑
k
tz,k

(
1− iq · ri +O(q2)

)
|ΦA⟩|2

×δ(ω − ωX)

= q2
∑

X∈1−
|⟨ΦX |

∑
k
tz,kri|ΦA⟩|2δ(ω − ωX) +O(q4)

Thus

BE1(ω) = lim
q→0

1

q2
RIV1−(q, ω)
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7. Discussion

7.1 Comments on the Fermi gas model

(1) Fermi gas model is heuristic,

but not necessarily realistic.

(2) It may reasonably work for large q region

(3) But for small q region, it is useless and

even misleading.

Spectrum at q = 0, 90Zr to 90Nb
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(4) If you want to have R(q, ω),

First calculate R(r, r′;ω),

by the methods described in subsec. 2-4.

Then take its Fourier transform

R(q, ω) = R̃(q, q;ω)

7.2 Comments on calculation of R(r, r′;ω)

(1) Choices of the mean field is crucial.

(2) Choice of effective ph interaction is

crucial.

(3) Calculations are carried out in the

angular momentum representation.

Namely, calculate RJ
SL,S′L′(r, r

′)

(4) Taking suitable linear combinations of

RJ
SL,S′L′(r, r

′), we can calculate

the response functions we want,

such as RS, RL, RT, etc.

29



(5) How to include nuclear correlations

beyond TDA or RPA in the framework

of the present formalism

is a longstanding subject

There are lots of matters to be discussed

about response functions.

But they are out of scope in this lecture.

For details about comments (3) and (4), see

Manual of the program RESPQ in

http://www.nishina.riken.jp/researcher/

archive/program e.html
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7.3 Comments on PWIA

(1) Factorized form

d2σ

dω∗dΩ
= K |Vi(q)|2R(q, ω)

is very attractive nature to extract

nuclear information Ri(q, ω)

(2) This doesn’t hold in DWIA or

more elaborate reaction theories.

(3) PWIA is heuristic,

but not realistic in general.

(4) It may work for some cases,

if one allows to use normalization factor

as

d2σ

dω∗dΩ
= Neff

[
K |Vi(q)|2R(q, ω)

]

Neff : Effective nucleon number
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図 2
208Pb(p, n) at 296 MeV. T. Wakasa, Pri-

vate communication

Looks OK, but to extract Ri(q, ω)

we need to know Neff from other independent

data or by theoretical calculation.
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● Taddeucci’s Prescription

A kind od the Neff method.

Applied to GT transitions, etc., very often.

Set a semi-empirical ansatz

d2σ(q, ω)

dωdΩ
= σ̂F (q, ω)R(q = 0, ω)

σ̂ : unit cross section

F (q, ω) : Normalized angular distribution

F (q = 0, ω) = 1

e.g. R(q = 0, ω) = RF(ω) or RGT(ω)

In Neff method,

σ̂ = NeffK(q = 0)|V (q = 0)|2
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・ Calculate F (q, ω) by DWBA

with simple nuclear structure model.

* ω dependence is not care for .

・ From observed database of

d2σ(q, ω)

dωdΩ
, and R(q = 0, ω)

Evaluate σ̂.

・ Apply the formula to the newly observed

data, and obtain R(q = 0, ω).

Careful calibration is needed !
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7.4 For more general cases

My opinion is

Structure models

Reaction theories

Response functions

Experimental Data
Modify the structure model
(parameters in the model, etc.)

Refine the reaction theory

Feed back

35



VIII. Inclusive Breakup Reactions

1. Breakup Processes

Consider the inclusive breakup reactions

a + A −→ b + anything

a = b + x

Assume

b and x : structureless

a
b b

x
x

A
A

X
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The process is decomposed

(1) Elastic breakup

(2) Inelastic breakup

(3) Transfer reaction

(4) Breakup fusion (Incomplete fusion)

・ Elastic breakup

a
b b

x x

A A

We will consider the decomposition

Elastic Breakup + Non-elastic Breakup

d2σinc

dEbdΩb
=
d2σEBU

dEbdΩb
+
d2σNEB

dEbdΩb
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2. Formalsm

● Hamiltonian

H = Tb + Tx +HA + Vxb + VxA + VbA

= (Tb + UbA) + (Tx + VxA) +HA

+ (Vxb + VbA − UbA)

= (Ta + UaA) + (Tbx + Vbx) +HA

+ (VxA + VbA − UaA)

● Wave functions

HAΦA = EAΦA

HXΦX = (Tx + VxA +HA)ΦX = EXΦX

(Tbx + Vbx)ϕa = ϵaϕa

● Distorted waves

(Ta + UaA)χ
(+)
a = Eaχ

(+)
a

(Tb + UbA)χ
(−)
b = Ebχ

(−)
b
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● Total energy of the initial state

Ei = EA + ϵa + Ea

● DWBA

Tfi = ⟨ΦXχ(−)
b |Vxb + VbA − UbA|ΦAϕaχ(+)

a ⟩
= ⟨ΦXχ(−)

b |V post|ΦAϕaχ(+)
a ⟩

● Inclusive cross section

d2σinc

dEbdΩb
= K

∑
X

∣∣∣∣∣⟨ΦXχ(−)
b |V post|ΦAϕaχ(+)

a ⟩
∣∣∣∣∣
2

× δ(Ei − Eb − EX)

Using the completeness, we get

d2σinc

dEbdΩb
= K ⟨ΦAϕaχ(+)

a |V post,†|χ(−)
b ⟩

× δ(Ei − Eb −HX)⟨χ(−)
b |V post|ΦAϕaχ(+)

a ⟩
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Assuming the excitation of A by V post

is very small, we can write

⟨χ(−)
b |V post|ΦAϕaχ(+)

a ⟩
= |ΦA⟩⟨χ(−)

b ΦA|V post|ΦAϕaχ(+)
a ⟩

Then we get

d2σinc

dEbdΩb

= K ⟨ΦAϕaχ(+)
a |V post,†|ΦAχ(−)

b ⟩
× ⟨ΦA|δ(Ei − Eb − (Tx +HA + VxA))|ΦA⟩
× ⟨χ(−)

b ΦA|V post|ΦAϕaχ(+)
a ⟩

= K ⟨ΦAϕaχ(+)
a |V post,†|ΦAχ(−)

b ⟩
× ⟨ΦA|δ(ω − Tx − VxA)|ΦA⟩
× ⟨χ(−)

b ΦA|V post|ΦAϕaχ(+)
a ⟩

where

ω = Ea + ϵa − Eb

is the energy transfer
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Introducing the Green’s function of x

Gx(ω) = ⟨ΦA|
1

ω − (Tx + VxA) + iδ
|ΦA⟩

=
1

ω − Tx − Ux + iδ

with Optical potential of x on A

Ux = Vx + iWx

All excitations of A are included through U .

● Inclusive breakup cross section

d2σinc

dEbdΩb
= −K

π
Im

∫
d3r′

x

∫
d3rx

× S†(r′
x)Gx(r

′
x, rx)S(rx)

where

S(rx) = ⟨rxχ(−)
b ΦA|V post|ΦAϕaχ(+)

a ⟩

Gx(r
′
x, rx;ω) = ⟨r′

x|Gx(ω)|rx⟩
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[Comment]
About the relation

⟨ΦA|
1

ω − (Tx + VxA) + iδ
|ΦA⟩ =

1

ω − Tx − Ux + iδ

Note

⟨ΦA|
1

ω − (Tx + VxA) + iδ
|ΦA⟩

̸= 1

⟨ΦA|ω − (Tx + VxA) + iδ|ΦA⟩
Set

P = |ΦA⟩⟨ΦA|, Q = 1− P, ω+ = ω + iδ

By short manupulation

P
1

ω+ − (Tx + VxA)
P

=
P

ω+ − Tx − PVxAP − PVxAQ
1

ω+−Tx−QVxAQ
QVxAP

=
1

ω+ − Tx − Ux

[Excersize] When AB = 1, express PBP by

PAP, PAQ,QAP,QAQ
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3. Decomposition of elastic and

non-elastic breakup

An identity of the Green’s function

ImGx = (1 +G†
xU

†
x)Im

[
G(0)
x

]
(1 + UxGx)

+ G†
xWxGx

where

G(0)
x =

1

ω − Tx + iδ

Use

ImG(0)
x =

∑
k
|k⟩δ(ω − k2

2mx
)⟨k|

we get

(1 +G†
xU

†
x)Im

[
G(0)
x

]
(1 + UxGx)

=
∑
k
|χ(−)

k ⟩δ
ω − k2

2mx

 ⟨χ(−)
k |

A. Kasano and M. Ichimura, PL 115B, 81(1982)
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Now the first term gives

Elastic Breakup Cross Section

d2σEBU

dEbdΩb
= K

∑
k
|⟨χ(−)

k χ
(−)
b ΦA|V post|ΦAϕaχ(+)

a ⟩|2

× δ(ω − k2

2mx
)

Consequently the seond term gives

Non-elastic Breakup Cross Section

d2σNEB

dEbdΩb
= −K

π
⟨ψx|Wx|ψx⟩

where

ψx(r) = Gx⟨χ(−)
b ΦA|V post|ΦAϕaχ(+)

a ⟩
=

∫
Gx(r, r

′;ω)S(r′)d3r′

This formalism is called IAV model

M. Ichimura, N. Austern and C.M. Vincent,

Phys. Rev. C32, 431(1985)
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4. Applications

Jin Lei and A.M. Moro, PR C92, 044616(2015)8

ferential cross section at Ed=80 MeV (dσ/dEp). In
Fig. 3(a), the dotted and thin solid lines correspond to
the EBU (CDCC) and NEB (FR-DWBA) calculations. It
is seen that the NEB contribution is much larger than the
EBU part. Both distributions show a bell-shaped behav-
ior, with a maximum around half of the deuteron energy.
However, it is observed that the sum of these two con-
tributions cannot explain the experimental yield at small
proton energies. As shown in Ref. [50], these low-energy
protons come mainly from compound nucleus followed
by evaporation and pre-equilibrium. Since these pro-
cesses are not accounted for by the present formalism, in
this work we have adopted the estimate done in Ref. [50]
(dot-dashed line in Fig. 3(a)). The total inclusive cross
section, including this contribution (thick solid line) re-
produces reasonably well the shape and magnitude of
the data. Note that, protons with energies larger than
∼74 MeV, correspond to bound states of the neutron-
target system and they are associated with a stripping
mechanism. This contribution could be accommodated
in the present formalism solving Eq. (12) for Ex < 0 and
with boundary conditions appropriate for bound states
instead of outgoing boundary conditions. Further, for
high-lying bound excited states, were the density of levels
will be very high, one may use the ideas of Udagawa and
co-workers of extending the complex potential to nega-
tive energies to describe the spreading of single-particle
states [53, 54]. These extensions go however beyond the
scope of the present work.

In Fig. 3(b), we compare different approximations for
the transition amplitude used in the NEB calculation,
namely, ZR-DWBA (dotted), FR-DWBA with no rem-
nant (dashed) and full FR-DWBA (solid). As in the pre-
vious case, the ZR-DWBA and FR-DWBA calculations
agree very well for proton energies around and above the
maximum, although some small differences are visible.
The effect of the remnant term is again found to be very
small.

We finally present the results for the d+58Ni reaction
at 100 MeV. This is shown in Fig. 4, where the top panel
contains the experimental and calculated proton angular
distributions for protons detected at 50 MeV in the lab-
oratory frame, and the bottom panel shows the energy
distribution for the protons scattered at 8◦ in the labora-
tory frame. Again, it is seen that the inclusive breakup
is dominated by the NEB contribution in the full an-
gular range, particularly at large scattering angles. As
in the 80 MeV case, both the EBU and NEB contribu-
tions exhibit bell-shaped distributions, with a maximum
around ≈ Ed/2. On the other hand, the protons coming
from compound nucleus and pre-equilibrium dominate
the low-energy region. Except for some underestimation
of the cross section at the maximum, the agreement be-
tween the theory and the data is rather satisfactory.
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FIG. 4. (Color online) Double differential cross section of
protons emitted in the 58Ni(d,pX) reaction at Ed = 100 MeV
in the laboratory frame. (a) Proton angular distribution for a
fixed proton energy of Ep = 50 MeV. (b) Energy distribution
for protons emitted at a laboratory angle of 8◦ (arrow in top
figure). The meaning of the lines is the same as in Fig. 3, and
are also indicated by the labels. Experimental data are from
Ref. [44].

B. Application to (6Li,αX)

As a second example, we consider the α production
following the breakup of the weakly-bound nucleus 6Li.
The understanding of the large α yields observed in reac-
tions with 6Li has been subject of many studies [57–65].
These works have shown (see e.g. Refs. [62, 64]) that the
total exclusive cross sections (α+d and α+p) are much
smaller than the total α production cross section. Con-
sequently, the α inclusive cross sections are largely un-
derestimated by CDCC calculations. Furthermore, some
of these works have shown that the total fusion cross sec-
tion of these reactions is significantly enhanced due to
partial fusion of the projectile, usually referred to as in-
complete fusion (ICF) [66]. The calculation of ICF cross
sections from a purely quantum mechanical framework is
still a challenging problem [66, 67]. Since the ICF is part
of the NEB cross section, the inclusive breakup model
considered in this work, might provide useful starting
point to tackle this problem. However, one has to bear
in mind that the NEB cross section will contain, in ad-
dition to ICF contributions, other contributions, such as
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