Polarizations and spin observables

* What is polarization
※ Induced Polarization P_{y} and analyzing power A_{y}
* Parity conservation
* Spin transfers D_{ij}
* Spin-parity dependences on $D_{i j}$ at 0 degrees
\div Spin measurements
* Experimental evidence for usefulness of D_{ij}
\% Homework

Fermi and Gamow-Teller excitations by (p,n)

Excite Fermi and Gamow-Teller transitions by (p,n)

- Fermi $(\Delta \mathrm{S}=0)$

Ref.
Lecture by Ichimura-san
"Spin Observables"

- Gamow-Teller ($\Delta \mathrm{S}=1$)
Spin-transfer to the targ
Spin-transfer in (p,n)
(spin-transfer b/w p and
Target nuclei
\because What is spin/polarization
$\%$ Relation between spin-transfers and target excitations
$\%$ What is the best energy for $\Delta S=1$ excitations
Proton beam
-Polarized (spin aligned)

What is polarizations?

What is polarization

In quantum mechanics, polarization is often treated with a density operator
Simple explanations would be useful for understanding the essence of spin physics with nuclear reactions

Nucleon (proton and neutron) is a particle with spin 1/2

- Two magnetic substates ($m= \pm 1 / 2$) along a quantization axis
- often called as up-spin ($m=+1 / 2$) and down-spin ($m=-1 / 2$) states.
- An assembly of particles (incident beam, scattered particles, etc.)
\rightarrow can be described by the population $\tilde{\boldsymbol{p}}(\boldsymbol{m})$ for each m state.

Then "polarized" and "unpolarized" mean:

- polarized: $\quad \tilde{p}(1 / 2) \neq \tilde{p}(-1 / 2)$
- unpolarized: $\tilde{p}(1 / 2)=\tilde{p}(-1 / 2)$
with the normalization of

$$
\tilde{p}(1 / 2)+\tilde{p}(-1 / 2)=1
$$

What is polarization

Instead of using population parameters
The distribution of populations can be described in terms of "moments"

- These moments are called as "polarization"
- For nucleons, it is simple as explained in the followings (deuteron with spin=1 is rather complicated)

The first moment (polarization p_{y}) with respect to y-axis is defined as

$$
p_{y} \equiv \frac{1}{(1 / 2)} \sum_{m} m \tilde{p}_{y}(m)=\tilde{p}_{y}(1 / 2)-\tilde{p}_{y}(-1 / 2)
$$

- p_{y} is bounded by $-1 \leqq \mathrm{p}_{\mathrm{y}} \leqq+1$

Both populations, $\tilde{p}_{y}(+1 / 2)$ and $\tilde{p}_{y}(-1 / 2)$, can be specified by p_{z} as follows:

$$
\begin{aligned}
& \tilde{p}_{y}(+1 / 2)=\frac{1}{2}\left(1+p_{y}\right) \\
& \tilde{p}_{y}(-1 / 2)=\frac{1}{2}\left(1-p_{y}\right)
\end{aligned}
$$

Induced polarization P_{y} and Analyzing power $\mathbf{A y}_{\mathbf{y}}$

Induced polarization p_{y}

Consider nucleon-induced two-body scattering (reaction):
$\cdot \mathrm{N}+\mathrm{A} \rightarrow \mathrm{N}^{\prime}+\mathrm{B} \quad$ or $\quad \mathrm{A}\left(\mathrm{N}, \mathrm{N}^{\prime}\right) \mathrm{B} \quad\left\{\begin{array}{l}\mathrm{N}: \text { incident nucleon } \\ \mathrm{A}: \text { target nucleus } \\ \mathrm{N}: \text { : scattered nucleon } \\ \mathrm{B}: \text { residua nucleus }\end{array}\right.$

$$
y \text {-axis } \| \vec{k}_{i} \times \vec{k}_{f}
$$

(normal to the reaction plane)
In general, polarization is produced even with an unpolarized beam.

- Spin-orbit interaction is mainly responsible for producing the polarization.

Exercise: Because of the parity conservation, only the p_{y} component takes a finite value. Why do the other p_{x} and p_{z} components become 0 ?

Parity inversion and conservation

Parity inversion (transformation) : \mathbf{P}

In three dimensions, simultaneous flip in the sign of all three spatial coordinates:

$$
P:\left(\begin{array}{l}
x \\
y \\
x
\end{array}\right) \mapsto\left(\begin{array}{l}
-x \\
-y \\
-z
\end{array}\right)
$$

P can be decomposed to the mirror reflection M and the $\pi\left(180^{\circ}\right)$ rotation R.

- For example, the reflection by the mirror on the $x-y$ plane gives:

$$
M_{x y}:\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \mapsto\left(\begin{array}{c}
x \\
y \\
-z
\end{array}\right)
$$

- Then the rotation around the z-axis by $\theta=\pi\left(180^{\circ}\right)$ gives: (just changing your view point)

$$
R_{z}:\left(\begin{array}{c}
x \\
y \\
-z
\end{array}\right) \mapsto\left(\begin{array}{c}
-x \\
-y \\
-z
\end{array}\right)
$$

Thus the parity inversion is physically same as the Mirror reflection.
Parity conservation of nuclear forces (strong interaction) means:

$$
\begin{aligned}
& \text { The probability of a process by nuclear forces } \\
& =\text { The probability of the mirror-reflected process (=parity-inverted process) }
\end{aligned}
$$

Constraints on polarizations by parity conservation

The parity conservation gives some constraints on polarizations:

- For an illustrative purpose, it is convenient to describe the spin (polarization) as a spinning top (rotation).

up spin(\uparrow)

down spin(\downarrow)
$\mathrm{P}_{\mathrm{z}}=0$ can be shown as follows:
- Consider the following process:
- An unpolarized nucleon is scattered at θ.
- The scattered nucleon is polarized to the +z axis (helicity=+).
- Mirror reflection on the x-z plane (scattering plane).
- In mirror image:
- The nucleon is also scattered at θ.
- The scattered nucleon is polarized to the $-z$ axis (helicity=-).

Analyzing power A_{y}

When incoming beam N is polarized in $A\left(N, N^{\prime}\right) B$

- The numbers of scattered particles to left and right, N_{L} and N_{R}, are different in general
- due to the spin-dependent interaction such as the spin-orbit interaction
- The left-right asymmetry A defined by

$$
A(\theta)=\frac{N_{L}(\theta)-N_{R}(\theta)}{N_{L}(\theta)+N_{R}(\theta)}
$$

is proportional to both:

- beam polarization : py
- analyzing power : $A_{y} \rightarrow$ specific to the reaction
- Therefore, $\mathrm{A}_{\mathrm{y}}(\theta)$ is given by

$$
p_{y} \cdot A_{y}(\theta)=\frac{N_{L}(\theta)-N_{R}(\theta)}{N_{L}(\theta)+N_{R}(\theta)}
$$

Exercise: Find A_{y} in the case of $\mathrm{N}_{\mathrm{L}}=1200$ and $\mathrm{N}_{\mathrm{R}}=800$ for $\mathrm{p}_{\mathrm{y}}=0.6$.

$$
A_{y}=\frac{1}{p_{y}} \frac{N_{L}-N_{R}}{N_{L}+N_{R}}=\frac{1}{0.6} \frac{1200-800}{1200+800}=0.33
$$

Spin-dependence of yields

Numbers of scattered particles to left and right are expressed as

$$
\begin{aligned}
& N_{L}(\theta)=\bar{N}_{L}(\theta)\left(1+p_{y} A_{y}(\theta)\right)=I \cdot n \cdot \varepsilon_{L} \cdot \frac{d \sigma(\theta)}{d \Omega} \cdot \Delta \Omega_{L}\left(1+p_{y} A_{y}(\theta)\right) \\
& N_{R}(\theta)=\bar{N}_{R}(\theta)\left(1-p_{y} A_{y}(\theta)\right)=I \cdot n \cdot \varepsilon_{R} \cdot \frac{d \sigma(\theta)}{d \Omega} \cdot \Delta \Omega_{R}\left(1-p_{y} A_{y}(\theta)\right) \\
& \text { In general, } \bar{N}_{L}(\theta) \text { and } \bar{N}_{R}(\theta) \text { depend on } \quad \bar{N}_{L, R}
\end{aligned}
$$

- numbers of incident and target particles: I and n
- cross section $\mathrm{d} \sigma / \mathrm{d} \Omega$ (for unpolarized beam)
- Solid angles and efficiencies of left and right detectors : $\Delta \Omega_{\llcorner/ R}$ and $\varepsilon_{\llcorner/ R}$

If $\bar{N}_{L}(\boldsymbol{\theta})=\bar{N}_{\boldsymbol{R}}(\boldsymbol{\theta})$ for an ideal case, $\mathrm{A}_{\mathrm{y}}(\theta)$ can be easily deduced as

$$
\bar{N}_{L}(\theta)=\frac{N_{L}}{\left(1+p_{y} A_{y}\right)}=\bar{N}_{R}(\theta)=\frac{N_{R}}{\left(1-p_{y} A_{y}\right)}
$$

$$
\longrightarrow \quad A_{y}=\frac{1}{p_{y}} \frac{N_{L}-N_{R}}{N_{L}+N_{R}}
$$

Exercise : In practical, $\bar{N}_{L}(\theta) \neq \bar{N}_{R}(\theta)$. In this case, how can we measure A_{y} precisely with small systematic uncertainty?

Absolute magnitude of polarization

Experimentally, an asymmetry $A(\theta)=p_{y} A_{y}(\theta)$ can be measured.

- If p_{y} is known, $A_{y}(\theta)$ can be obtained.
- If $A_{y}(\theta)$ is known, p_{y} can be deduced. $\}$

```
How to obtain py or }\mp@subsup{A}{y}{}(0)\mathrm{ firstly?
```

\rightarrow Double elastic-scattering method can be used.

Exercise 1 :

Explain how to obtain p_{y} or A_{y} firstly by the double scattering method referring Appendix B of this lecture.

Exercise 2 :
In the double scattering method, the $P_{y}=A_{y}$ equality for elastic scattering of spin $1 / 2$ particles from a spin-zero target is used. Proof this equality referring Appendix C of this lecture.

Spin transfer D_{ij}

Ref. Lecture by Ichimura-san

Polarization transfer D_{ij} in PWIA

Polarization transfer D_{ij} for $X(\vec{a}, \vec{b}) Y \quad$ (also known as D_{ji} and K_{ij})
\rightarrow relate the i-axis component of polarization of outgoing nucleon to j-axis component of incident nucleon

- Axis definition and example for $D_{S^{\prime}}\llcorner$

Longitudinal $\hat{\boldsymbol{L}}=\hat{\boldsymbol{k}}$

Normal

$$
\hat{N}=\frac{\hat{k}_{i} \times \hat{k}_{f}}{\left|\hat{k}_{i} \times \hat{k}_{f}\right|}
$$

Sideways $\hat{S}=\hat{N} \times \hat{L}$

In general, there are nine D_{ij} 's (3×3 matrix elements).
\rightarrow The parity conservation allows finite values $(\neq 0)$ only for five D_{ij} 's

$$
\left(\begin{array}{ccc}
D_{S^{\prime} S} & D_{S^{\prime} N} & D_{S^{\prime} L} \\
D_{N^{\prime} S} & D_{N^{\prime} N} & D_{N^{\prime} L} \\
D_{L^{\prime} S} & D_{L^{\prime} N} & D_{L^{\prime} L}
\end{array}\right) \xrightarrow[\text { parity }]{\text { conservation }}\left(\begin{array}{ccc}
D_{S^{\prime} S} & 0 & D_{S^{\prime} L} \\
0 & D_{N^{\prime} N} & 0 \\
D_{L^{\prime} S} & 0 & D_{L^{\prime} L}
\end{array}\right)
$$

Exercise: Under the parity and rotation invariances, the polarization transfer
$D_{S^{\prime} N}=D_{N^{\prime} S}=D_{N^{\prime} L}=D_{L^{\prime} N}=0$. Proof this equality.

T-matrix and NN amplitudes

$D_{i j}$ is defined using T-matrix, T, and Pauli spin matrix, σ, as

$$
D_{i j}=\frac{\operatorname{Tr}\left[T \sigma_{j} T^{\dagger} \sigma_{i}\right]}{\operatorname{Tr}\left[T T^{\dagger}\right]} \quad\left(I \equiv \frac{d \sigma}{d \Omega}=\frac{1}{4} \operatorname{Tr}\left[T T^{\dagger}\right]\right)
$$

T-matrix from the ground state $|0\rangle$ to the excited state $|m\rangle$ for $\mathrm{N}-\mathrm{A}$ scattering in PWIA is given by

$$
T(q)=\langle m| M(q) e^{-i \vec{q} \cdot \vec{r}}|0\rangle
$$

where

- $\overrightarrow{\boldsymbol{q}}(\boldsymbol{q})$: momentum transfer
- $M(q)$: nucleon-nucleon (NN) scattering amplitude

KMT notation and q-frame

In so-called KMT (Kerman-McManaus-Thaler) notation, $\mathrm{M}(\mathrm{q})$ is written as:

$$
M(q)=A+B \sigma_{1 \hat{n}} \sigma_{2 \hat{n}}+C\left(\sigma_{1 \hat{n}}+\sigma_{2 \hat{n}}\right)+E \sigma_{1 \hat{q}} \sigma_{2 \hat{q}}+F \sigma_{1 \hat{p}} \sigma_{2 \hat{p}}
$$

with the following coordinate system (q-frame).

$$
\begin{aligned}
& \hat{q}=\frac{\vec{q}}{|\vec{q}|} \\
& \hat{n}=\frac{\vec{n}}{|\vec{n}|} \\
& \hat{p}=\hat{q} \times \hat{n}
\end{aligned}
$$

Spherical tensor expression of M(q)

A.K.Kerman, H.McManus, and R.M.Thaler, Ann. Phys. 8, 551 (1959).

It is convenient to take the q -direction as a quantization axis.
q is the direction of the "impact" to the target.
The NN amplitude is written with spherical tensor operators as:

$$
M(q)=\underbrace{M_{0}}_{\text {spin-scalar }}+\underbrace{\sum_{\mu}(-\mathbf{1})^{\mu} \sigma_{\mu}^{1} M_{\mu}^{1}}_{\text {spin-vector }}
$$

- $\sigma_{\mu}{ }^{1}$ are tensor operators of rank-1 of the target nucleon defined by:

$$
\sigma_{0}^{1}=\sigma_{1 \hat{q}} \quad \sigma_{1}^{1}=-\frac{1}{\sqrt{2}}\left(\sigma_{1 \hat{n}}+i \sigma_{1 \hat{p}}\right) \quad \sigma_{-1}^{1}=\frac{1}{\sqrt{2}}\left(\sigma_{1 \hat{n}}-i \sigma_{1 \hat{p}}\right)
$$

- M_{0} and $M_{\mu}{ }^{1}$ are operators of the incident nucleon defined by:

$$
\begin{array}{ll}
M_{0}=A+C \sigma_{2 \hat{n}} & M_{1}^{1}=-\frac{1}{\sqrt{2}}\left(C+B \sigma_{2 \hat{n}}-i F \sigma_{2 \hat{p}}\right) \\
M_{0}^{1}=E \sigma_{2 \hat{q}} & M_{-1}^{1}=\frac{1}{\sqrt{2}}\left(C+B \sigma_{2 \hat{n}}+i F \sigma_{2 \hat{p}}\right)
\end{array}
$$

Isospin

A nucleon (p or n) has the isospin (τ) degree of freedom.
\rightarrow Each amplitude in M(q) has isoscalar (IS) and isovector (IV) terms.

- For example, explicit form of A is

$$
A=A_{\mathrm{IS}}+A_{\mathrm{IV}} \tau_{1} \cdot \tau_{2}
$$

N-A T-matrix

N -A T-matrix for an isovector (IV) $0^{+} \rightarrow \mathrm{J}^{\pi}$ excitation is expressed as:

$$
T(q)=\underbrace{\langle J| e^{-i \vec{q} \cdot \vec{r}} \tau_{ \pm}^{1}|0\rangle \tau_{\mp}^{1} M_{0}+\sum_{\mu=-1}^{+1}\langle J| e^{-i \vec{q} \cdot \vec{r}} \sigma_{\mu}^{1} \tau_{ \pm}^{1}|0\rangle \tau_{\mp}^{1} M_{\mu}^{1}}_{\text {spin-scalar }} ⿻ \begin{array}{cc}
\sum_{\text {spin-vector }} \\
\Delta S=0 & \Delta S=1
\end{array}
$$

Target operators, $e^{i \vec{q} \cdot \vec{r}}$ and $e^{i \vec{q} \cdot \vec{r}} \sigma_{\mu}^{1}$, can be expressed in standard tensor forms:

$$
\begin{aligned}
e^{-i \vec{q} \cdot \vec{r}} & =\sum_{\ell} \rho_{\ell} Y_{\ell}^{0} \quad \text { (plane-wave expansion/Rayleigh equation) } \\
e^{-i \vec{q} \cdot \vec{r}} \sigma_{\mu}^{1} & =\sum_{\ell J} \rho_{\ell}(1 \ell \mu 0 \mid J \mu) T_{J}^{\mu}(\ell s) \\
\rho_{\ell} & =\sqrt{2 \ell+1} \sqrt{4 \pi}(-i)^{\ell} j_{\ell}(q r)
\end{aligned}
$$

$$
T_{J}^{\mu}(\ell s)=\sum_{\mu^{\prime} \mu^{\prime \prime}}\left(\ell s \mu^{\prime} \mu^{\prime \prime} \mid J \mu\right) Y_{\ell}^{\mu^{\prime}} \sigma_{\mu^{\prime \prime}}^{1}
$$

N-A T-matrix

Using the standard formulas for reduced matrix elements, for example we get the isovector spin-vector T-matrix as

$$
T(q)=(-1)^{J-\mu} \frac{1}{\sqrt{2 J+1}}(1 \ell \mu 0 \mid J \mu) Q_{J}^{\ell} M_{\mu}^{1}
$$

with the reduced nuclear matrix element $Q_{J}{ }^{\prime}$:

$$
Q_{J}^{\ell}=\left\langle J\left\|\rho_{\ell} T_{J}(\ell s) \tau^{1}\right\| 0\right\rangle
$$

Now we can calculate the specific observable for a $0^{+} \rightarrow \mathbf{J}^{\boldsymbol{\pi}}$ transition with Q^{\prime}.
Example: $I D_{n n}$ for $0^{+} \rightarrow 2^{-}(\mathrm{J}=2, \mathrm{~L}=1)$
$I D_{n n}=\frac{1}{4} \operatorname{Tr}\left[T \sigma_{n} T^{\dagger} \sigma_{n}\right]$
Note: $\sigma_{i} \sigma_{j}=i \varepsilon_{i j k} \sigma_{k}+\delta_{i j}\{i, j, k\}=\{n, p, q\}$

$$
\begin{aligned}
& =\left(C^{2}+B^{2}-F^{2}\right) \frac{2 \pi(J+1)}{2 J+1}\left(Q_{J}^{\ell=J-1}\right)^{2}-E^{2} \frac{2 \pi \cdot 2 J}{2 J+1}\left(Q_{J}^{\ell=J-1}\right)^{2} \\
& =\left[\frac{3}{5}\left(C^{2}+B^{2}-F^{2}\right)-\frac{4}{5} E^{2}\right] 2 \pi\left(Q_{J=2}^{\ell=1}\right)^{2}
\end{aligned}
$$

Polarization observables and transition densities

H.Sakai, "Lecture note at RIKEN Winter School" (1993).

Polarization observables in PWIA can be expressed with transition densities.

$$
\begin{aligned}
X_{0} & =\sqrt{4 \pi} Q_{J} \\
X_{T}^{\prime} & =\sqrt{2 \pi} Q_{J}^{\ell=J} \\
X_{L} & =\sqrt{\frac{2 \pi \cdot 2 J}{2 J+1}} Q_{J}^{\ell=J-1}-\sqrt{\frac{2 \pi(2 J+1)}{2 J+1}} Q_{J}^{\ell=J+1} \\
X_{T} & =\sqrt{\frac{2 \pi(J+1)}{2 J+1}} Q_{J}^{\ell=J-1}+\sqrt{\frac{2 \pi \cdot J}{2 J+1}} Q_{J}^{\ell=J+1}
\end{aligned}
$$

observable	natural parity	unnatural parity
$I=\frac{d \sigma}{d \Omega}$	$\left(C^{2}+B^{2}+F^{2}\right) X_{T}^{\prime 2}+\left(A^{2}+C^{2}\right) X_{0}^{2}$	$\left(C^{2}+B^{2}+F^{2}\right) X_{T}^{2}+E^{2} X_{L}^{2}$
$I D_{q q}$	$\left(C^{2}-B^{2}-F^{2}\right) X_{T}^{\prime 2}+\left(A^{2}-C^{2}\right) X_{0}^{2}$	$\left(C^{2}-B^{2}-F^{2}\right) X_{T}^{2}+E^{2} X_{L}^{2}$
$I D_{n n}$	$\left(C^{2}+B^{2}-F^{2}\right) X_{T}^{\prime 2}+\left(A^{2}+C^{2}\right) X_{0}^{2}$	$\left(C^{2}+B^{2}-F^{2}\right) X_{T}^{2}-E^{2} X_{L}^{2}$
$I D_{p p}$	$\left(C^{2}-B^{2}+F^{2}\right) X_{T}^{\prime 2}+\left(A^{2}-C^{2}\right) X_{0}^{2}$	$\left(C^{2}-B^{2}+F^{2}\right) X_{T}^{2}-E^{2} X_{L}^{2}$
$I D_{q p}=-I D_{p q}$	$2 \operatorname{Im}\left(B C^{*}\right) X_{T}^{\prime 2}-2 \operatorname{Im}\left(A C^{*}\right) X_{0}^{2}$	$2 \operatorname{Im}\left(B C^{*}\right) X_{T}^{2}$
$I D_{n 0}=I D_{0 n}$ $\left(A_{y}=P\right)$	$2 \operatorname{Re}\left(B C^{*}\right) X_{T}^{\prime 2}+2 \operatorname{Re}\left(A C^{*}\right) X_{0}^{2}$	$2 \operatorname{Re}\left(B C^{*}\right) X_{T}^{2}$

Polarization transfer D_{ii} at 0 degrees

From spatial symmetry,

- $\mathrm{B}=\mathrm{E}$ (two transverse directions are identical) and $\mathrm{C}=0$

Polarization transfers, $D_{\text {NN }}$ and $D_{\text {LL, }}$ in PWIA in laboratory frame.

Note:

At 0°, the spin-longitudinal transition, X_{L}, is caused by the F-term in KMT.

Relations between polarization observables in q-frame and lab.-frame are given in Appendix D.

Polarization observables	natural parity (J=L)		unnatural parity $(\mathrm{J}=\mathrm{L} \pm 1)$
	$\Delta \mathrm{S}=0$	$\Delta S=1$	$\Delta \mathrm{S}=1$
$\begin{gathered} D_{\mathrm{NN}} \\ \left(=\mathrm{D}_{\mathrm{nn}}\right) \end{gathered}$	+1	0	$\frac{-F^{2} X_{L}^{2}}{2 B^{2} X_{T}^{2}+F^{2} X_{L}^{2}}$
$\begin{gathered} D_{L L} \\ \left(=D_{q q}\right) \end{gathered}$	+1	-1	$\frac{-2 B^{2} X_{T}^{2}+F^{2} X_{L}^{2}}{2 B^{2} X_{T}^{2}+F^{2} X_{L}^{2}}$
$\begin{gathered} \text { 2DNN+ } D_{L L} \\ \left(=D_{q q}+D_{n n}+D_{p p}\right) \end{gathered}$	+3	-1	-1

- In general, a natural parity transition is the mixed transitions of $\Delta \mathrm{S}=0$ and 1 .
- $\mathrm{D}_{\mathrm{NN}}\left(0^{\circ}\right)=0 \sim 1$ and $\mathrm{D}_{\mathrm{LL}}\left(0^{\circ}\right)=-1 \sim 1$
- $\Delta J^{\pi}=0^{+}($Fermi, IAS $)$is a special case with $\Delta S=0 \rightarrow \mathrm{D}_{\mathrm{NN}}\left(0^{\circ}\right)=\mathrm{D}_{\mathrm{LL}}\left(0^{\circ}\right)=+1$

$D_{i i}\left(0^{\circ}\right)$ in PWIA for several ΔJ^{π}

H.Sakai, "Lecture note at RIKEN Winter School" (1993).

$$
\frac{X_{T}^{2}}{X_{L}^{2}}=\frac{J+1}{2 J} \quad\left(J=J_{>}=L+1\right) \quad \frac{X_{T}^{2}}{X_{L}^{2}}=\frac{J}{2(J+1)} \quad\left(J=J_{<}=L-1\right)
$$

Transition	$\Delta \mathrm{J} \pi$	$\Delta \mathrm{S}$	$\mathrm{X}_{\mathrm{T}^{2} / \mathrm{X}_{\mathrm{L}}{ }^{2}}$	$\left.\mathrm{DNN}_{\mathrm{NN}} 0^{\circ}\right)$	$\mathrm{DLL}^{\prime}\left(0^{\circ}\right)$
Fermi	0^{+}	0	-	+1	+1
Gamow- Teller	1^{+}	1	1	$\frac{-F^{2}}{2 B^{2}+F^{2}}$	$\frac{-2 B^{2}+F^{2}}{2 B^{2}+F^{2}}$
Dipole	1^{-}	0	-	+1	+1
	0^{-}	1	0	-1	+1
Spin- Dipole	1^{-}	1	-	0	-1
	2^{-}	1	$3 / 4$	$\frac{-2 F^{2}}{3 B^{2}+2 F^{2}}$	$\frac{-3 B^{2}+2 F^{2}}{3 B^{2}+2 F^{2}}$

$D_{i i}\left(0^{\circ}\right)$ in PWIA for several ΔJ^{π}

If the central NN interactions are dominant and the tensor interactions are negligible.

- B=F (central only)
- which is appropriate at $\mathrm{T}_{\mathrm{p}}<200 \mathrm{MeV}$ (at $\mathrm{T}_{\mathrm{p}}>200 \mathrm{MeV}$, tensor int. are significant)

Transition	$\Delta \mathrm{J}^{\pi}$	$\Delta \mathrm{S}$	$\mathrm{X}_{\mathrm{T}^{2} / \mathrm{XL}^{2}}$	$\mathrm{DNN}_{\mathrm{NN}\left(0^{\circ}\right)}$	$\mathrm{DLL}^{\left(0^{\circ}\right)}$
Fermi	0^{+}	0	-	$+\mathbf{1}$	$+\mathbf{1}$
Gamow- Teller	1^{+}	1	1	$-\frac{1}{3}$	$-\frac{1}{3}$
GD	1^{-}	0	-	+1	+1
	0^{-}	1	0	-1	+1
Spin- Dipole	1^{-}	1	-	0	-1
	2^{-}	1	$3 / 4$	$-\frac{2}{5}$	$-\frac{1}{5}$

Spin measurements

Polarimeter (FOM)

Polarization (p) analysis in a polarimeter

- Measure the left-right (up-down) asymmetry: A
- $\mathrm{A}=p \cdot \mathrm{~A}_{\mathrm{y} \text {;eff }} \quad \mathrm{A}_{\mathrm{y} \text {;eff }}=$ effective analyzing power of a polarimeter (A_{y} of polarimetry)

In general, polarization is measured as follows:

- A polarized beam (particles) bombards on an analyzer target.
- Incident particles are scattered to left or right, and detected with efficiency ε
- Here ε is defined as
$\varepsilon=\frac{\text { Number of detected particles }}{\text { Number of incident particles }}$
- The analyzing reaction produces the left-right asymmetry due to its effective analyzing power $A_{y \text {;eff }}$

Dependence of the polarimeter performance (ability for determining p) on ε and A_{y};eff ?

Polarimeter performance

For $2 n_{0}$ incident particles, detected numbers of left and right detectors of a polarimeter are given by

$$
\left.\begin{array}{l}
N_{L}=\varepsilon n_{0}\left(1+p_{y} A_{y ; \mathrm{eff}}\right) \\
N_{R}=\varepsilon n_{0}\left(1-p_{y} A_{y ; \mathrm{eff}}\right)
\end{array}\right\} A=p_{y} A_{y ; \mathrm{eff}}=\frac{N_{L}-N_{R}}{N_{L}+N_{R}}
$$

Statistical uncertainty of A is given by

$$
\begin{aligned}
(\Delta A)^{2} & =\left(\frac{\partial A}{\partial N_{L}}\right)^{2}\left(\Delta N_{L}\right)^{2}+\left(\frac{\partial A}{\partial N_{R}}\right)^{2}\left(\Delta N_{R}\right)^{2} \\
& =\frac{4 N_{L} N_{R}}{\left(N_{L}+N_{R}\right)^{3}}
\end{aligned}
$$

Statistical term
Statistical uncertainty of p is given by

$$
\begin{aligned}
& \Delta \boldsymbol{p}_{\boldsymbol{y}}=\frac{\Delta \boldsymbol{A}}{\boldsymbol{A}_{\boldsymbol{y} ; \mathrm{eff}}} \simeq \frac{1}{A_{y ; \mathrm{eff}}} \frac{1}{\sqrt{\varepsilon}} \\
& \downarrow\left.\frac{1}{\sqrt{2 n_{0}}}\right) \\
& \text { intrinsic to polarimeter } \rightarrow \begin{array}{c}
\text { Determine the performance } \\
\text { of a polarimeter }
\end{array}
\end{aligned}
$$

Figure of merit of a polarimeter

Since Δp_{y} is given by

$$
\Delta p_{y}=\frac{1}{\sqrt{2 n_{0}}} \cdot \frac{1}{\sqrt{\varepsilon} \cdot A_{y ; \mathrm{eff}}}
$$

the "Figure Of Merit" (FOM) of a polarimeter can be defined as

$$
\mathrm{FOM} \equiv \varepsilon \cdot A_{y ; \mathrm{eff}}^{2} \quad \leftrightarrow \quad \Delta p=\frac{1}{\sqrt{2 n_{0}}} \frac{1}{\sqrt{\mathrm{FOM}}}
$$

Typical performances of polarimeters
Typical/designed values:

- $\varepsilon=10^{-1}$ (for protons) $\sim 10^{-4}$ (for neutrons)
- $\mathrm{A}_{\mathrm{y} \text {;eff }}=0.1$ (intermediate energy for neutrons) ~ 0.9 (low energy)

Proton "beam" polarimeter

$p+p$ scattering is generally used because

- moderate $\mathrm{A}_{\mathrm{y}}(\sim 0.4)$ and $\mathrm{d} \sigma / \mathrm{d} \Omega$
- easy to measure
$d \sigma / d \Omega$ and A_{y} for $p+p$ at $T_{p}=200-400 \mathrm{MeV}$

> Ay takes a maximum at $\theta_{\text {lab }}=17^{\circ}$ for $200-400 \mathrm{MeV}$

B.G. in the polarization analysis

In general, a polyethylene sheet $\left(\mathrm{CH}_{2}\right)$ is used as a hydrogen target

- B.G. from the C-target
- At $\theta=17^{\circ}$, quasi-elastic scattering (QES) is dominant ($p+p$ in C)
A_{y} for (p, p^{\prime})-QES on ${ }^{12} \mathrm{C}$ at LAMPF/TRIUMF/RCNP
- Systematically smaller than A_{y} for $\mathrm{p}+\mathrm{N}$
- QES on ${ }^{12} \mathrm{C}$ should be suppressed to maximize the FOM of a polarimeter

Kinematical coincidence

Kinematical coincidence is useful to suppress the QES background

$\cdot p+p$ scattering : 2-body scattering \rightarrow Recoil angle θ_{R} : fixed

- ${ }^{12} \mathrm{C}(\mathrm{p}, \mathrm{pp}){ }^{11} \mathrm{~B} \quad: 3$-body scattering $\rightarrow \theta_{\mathrm{R}}$: varied (due to Fermi motion of target-N)

Measure scattered (θ) and recoiled $\left(\theta_{\mathrm{R}}\right)$ protons "in coincidence"

- QES events can be significantly suppressed.

Neutron polarimeters

In general, a neutron polarimeter consists of analyzer and catcher planes:
Both planes are made of scintillator $(\mathrm{H}+\mathrm{C})$
NPOL3 at RCNP

- can measure arrival time and 2D position In the analyzer, $n+p$ scattering will occur - arrival time \rightarrow neutron Time-Of-Flight (TOF) Doubly scattered neutron or recoil proton is also measured in the following catcher
- arrival time difference
\rightarrow TOF of double scattering particle.
- 2D positions in analyzer and catcher \rightarrow double scattering angles (θ, ϕ)

Left/Right/Up/Down scatterings can be defined by (θ, Φ) \rightarrow Left-right asymmetry $\rightarrow p_{n, N^{\prime}}$ (normal)
\rightarrow Up-Down asymmetry $\rightarrow p_{n, s^{\prime}}$ (sideways)

Kinematical selection

The analyzer is made of scintillator including H and \mathbf{C}.

- The $\mathrm{n}+\mathrm{C}$ events including QES become B.G..
- The FOM should be maximized by eliminating these events.

Kinematical selection for $n+p$ events

- TOF and (θ, ϕ) for double scattering is measured.
- TOF vs. θ for $n+p$ is known:
- QES and γ-ray B.G. can be eliminated.

FOM of neutron polarimeters

FOM of modern neutron polarimeters

FOM $=2 \sim 5 \times 10^{-4}$

Note:

Calibrations methods of a neutron polarimeter are described in Appendix E of this lecture.

One in a few thousand neutrons entering a polarimeter is effective for polarization analysis.

Facility	Tn range (MeV)	TOF path length (m)	FOM $\times 10^{4}$ (Tn)	Ref.
RCNP	$150-400$	100	4.94 $(291 \mathrm{MeV})$	$[1,2,3]$
IUCF	$80-200$	120	1.73 $(194 \mathrm{MeV})$	$[4,5]$
LAMPF	$300-800$	600	2.00 $(318 \mathrm{MeV})$	$[6,7,8]$

[1] H.Sakai et al., Nucl. Instrum. Methods Phys. Res. A 320, 479 (1992).
[2] H.Sakai et al., Nucl. Instrum. Methods Phys. Res. A 369, 120 (1996).
[3] T. Wakasa et al., Nucl. Instrum. Methods Phys. Res. A 404, 355 (1998).
[4] C.D. Goodman et al., IEEE Trans. Nucl. Sci. 25, 2248 (1979).
[5] M.Palarczyk et al., Nucl. Instrum. Methods Phys. Res. A 457, 309 (2001).
[6] J.B.McClelland et al., Nucl. Instrum. Methods Phys. Res. A 276, 35 (1989).
[7] D.J.Mercer, Ph.D. Thesis, University of Colorado, 1993.

Experimental investigation for $\Delta S=0$ and $\Delta S=1$ strengths using $D_{i j}$

Power of spin transfers

Polarization transfer observable D_{ij} :

- Direct measure of the spin transfer

PWIA predictions at $\mathbf{T}_{\mathbf{p}}<\mathbf{2 0 0} \mathbf{M e V}$ (Central components of the NN interaction are dominant):

Transition	$\Delta \mathrm{J} \pi$	$\Delta \mathrm{S}$	$\mathrm{X}_{\mathrm{T}}{ }^{2} / \mathrm{XL}^{2}$	DNN(0 $\left.{ }^{\circ}\right)$	$\mathrm{DLL}^{\left(00^{\circ}\right)}$
Fermi	0^{+}	0	-	+1	$+\mathbf{1}$
GT	1^{+}	1	1	$-\frac{1}{3}$	$-\frac{1}{3}$

Examples at 0° and $\mathrm{T}_{\mathrm{p}}=120-200 \mathrm{MeV}$ for ${ }^{14} \mathrm{C}(\mathrm{p}, \mathrm{n}){ }^{14} \mathrm{~N}$:
Well-known Fermi and GT transitions:

- Fermi $(\Delta S=0)$ at $2.3 \mathrm{MeV} \rightarrow \mathrm{D}_{\mathrm{NN}}=\mathrm{D}_{\mathrm{LL}}=1>0$
- GT $(\Delta \mathrm{S}=1)$ at $3.9 \mathrm{MeV} \rightarrow \mathrm{D}_{\mathrm{NN}}=\mathrm{D}_{\mathrm{LL}}=-1 / 3<0$

Demonstration : ${ }^{14} \mathrm{C}(p, n)^{14} \mathrm{~N}$

Fermi IAS ($\mathbf{0}^{+}$) and Gamow-Teller ($\mathbf{1}^{+}$) peaks are observed.

Fermi IAS (0^{+}) :

- $\sigma D_{\mathrm{NN}}>0\left(\because \mathrm{D}_{\mathrm{NN}}=+1\right)$

Gamow-Teller (1+) :

- $\sigma D_{\mathrm{NN}}<0\left(\because \mathrm{D}_{\mathrm{NN}}=-1 / 3\right)$

We can identify F and $G T$ transitions with $D_{i j}$.

How about ${ }^{90} \mathrm{Zr}(p, n)$
in which GTR was observed?

J.Rapaport and E.Sugarbaker, Ann. Rev. Nucl. Part. Sci. 44, 109 (1994).

Spin-vector dominance for ${ }^{90} \mathrm{Zr}(\mathrm{p}, \mathrm{n})$

In PWIA/DWIA

- GT $\left(\Delta J^{\pi}=1^{+}\right)$

$$
D_{N N} \simeq-0.3
$$

- IAS ($\Delta \mathrm{J}^{\pi}=0^{+}$)

$$
D_{N N}=+1.0
$$

At 300 MeV

IAS can be identified in D_{NN} whereas it is not seen in σ

- Dnn is powerful to identify $\Delta S=0$ and $\Delta S=1$
- IAS is relatively minimum

Continuum beyond GTR

- DNN is similar to that of GTR ${ }_{8}$
- $\Delta \mathrm{S}=1$ dominance

The 300 MeV data is ideal for searching the GT strength in the continuum

Homework \#2

Homework \#2

1. Show that, in a proton-nucleus scattering with unpolarized protons, the scattered protons would be polarized due to the spin-orbit interaction.
2. Under the parity invariance and rotation invariances, the polarization transfer $D_{L^{\prime} N}=0$. Proof this equality.
3. In an analyzing power measurement, $\bar{N}_{L}(\theta) \neq \bar{N}_{R}(\theta)$ in general since it is very difficult to set $\Delta \Omega_{\mathrm{L}}=\Delta \Omega_{\mathrm{R}}$.
How can we measure A_{y} precisely with small systematic uncertainty? (Hint: see Appendix A of this lecture).
4. Explain how to obtain p_{y} or A_{y} firstly by the double scattering method referring Appendix B of this lecture.
5. In the double scattering method, the $P_{y}=A_{y}$ equality for elastic scattering of spin $1 / 2$ particles from a spin-zero target is used. Proof this equality referring Appendix C of this lecture.
6. Under the parity invariance and rotation invariances, the polarization transfer
$D_{L^{\prime} N}=0$. Proof this equality.

Homework \#2 (cont’d)

7. There are several conventions for the NN scattering amplitude. In the following conventions, express the $a-\varepsilon$ terms by using the A-F terms in the KMT convention.
(1)Love and Franey

$$
\left\{\begin{array}{l}
q \equiv k-k^{\prime} \\
Q=k+k^{\prime} \\
\hat{n} \equiv \hat{q} \times \hat{Q}
\end{array}\right.
$$

$$
\begin{aligned}
M\left(\boldsymbol{E}_{\mathrm{CM}}, \theta\right)= & \alpha \frac{1-\sigma_{1} \cdot \sigma_{2}}{4}+\beta \frac{\text { spin-singlet }}{\text { spin-triplet }} \begin{array}{l}
\text { spin-orbit } \\
4 \\
\\
\\
\\
\\
\underbrace{\boldsymbol{\delta} S_{12}(\hat{q})+\epsilon \boldsymbol{\sigma}_{12}(\hat{Q})}_{\text {tensor }}+\overbrace{\gamma\left(\sigma_{1}+\sigma_{2}\right) \cdot \hat{n}}^{\text {direct exchange }}
\end{array} \quad \begin{array}{l}
\text { tensor operator } \\
S_{12}(\hat{u}) \equiv 3\left(\sigma_{1} \cdot \hat{u}\right)\left(\sigma_{2} \cdot \hat{u}\right)-\sigma_{1} \cdot \sigma_{2}
\end{array}
\end{aligned}
$$

(2)Love non-spin spin-orbit spin-longitudinal

$$
\begin{aligned}
& M\left(\boldsymbol{E}_{\mathrm{CM}}, \theta\right) \stackrel{\overbrace{\alpha}}{=}+\overbrace{\beta\left(\sigma_{1}+\sigma_{2}\right) \cdot \hat{n}}+\overbrace{\gamma\left(\sigma_{1} \cdot \hat{q}\right)\left(\sigma_{2} \cdot \hat{q}\right)} \\
&+\delta\left(\sigma_{1} \times \hat{q}\right) \cdot\left(\sigma_{2} \times \hat{\boldsymbol{q}}\right) \\
&\left.+\epsilon\left[\left(\sigma_{1} \times \hat{n}\right) \cdot\left(\sigma_{2} \times \hat{n}\right)-\left(\sigma_{1} \times \hat{Q}\right) \cdot\left(\sigma_{2} \times \hat{Q}\right)\right]\right\} \text { spin-transverse }
\end{aligned}
$$

Homework \#2 (cont’d)

8. In general, the quantization axis of the polarized proton beam is the normal direction (normal to the bending plane of the beam line). In order to measure a complete set of polarization transfer D_{i}, we also need the proton beams polarized to longitudinal and sideways directions. At RCNP (Osaka, Japan), these polarized beams can be made by using one 45° dipole and two solenoid magnets as shown in Fig.1. Please explain how can we obtain the longitudinally and sideways polarized proton beams by using these magnets referring to the Appendix F of this lecture. Assume that the proton beam energy is 60 MeV .

Appendix A

Practical measurement of A_{y}

Practical measurement of A_{y}

In practical, $\bar{N}_{L}(\theta) \neq \bar{N}_{R}(\theta)$ since it is very difficult to set $\Delta \Omega_{\mathrm{L}}=\Delta \Omega_{\mathrm{R}}$ Thus, we need the data as follows for two different polarizations: py^{1} and $\mathrm{py}^{2}{ }^{2}$

$$
\left.\left.\begin{array}{l}
N_{L}^{1}=\bar{N}_{L}(\theta)\left(\mathbf{1}+\boldsymbol{p}_{y}^{1} A_{y}\right) \\
\boldsymbol{N}_{R}^{1}=\bar{N}_{R}(\boldsymbol{\theta})\left(\mathbf{1}-\boldsymbol{p}_{y}^{1} A_{y}\right)
\end{array}\right\} \text { for by } \begin{array}{l}
N_{L}^{2}=\bar{N}_{L}(\boldsymbol{\theta})\left(\mathbf{1}+\boldsymbol{p}_{y}^{2} \boldsymbol{A}_{y}\right) \\
\boldsymbol{N}_{R}^{2}=\bar{N}_{R}(\boldsymbol{\theta})\left(\mathbf{1}-\boldsymbol{p}_{\boldsymbol{y}}^{2} \boldsymbol{A}_{y}\right)
\end{array}\right\} \text { for py² }
$$

If we set $p_{y}{ }^{1}=-p_{y}{ }^{2}=p_{y}$ by tuning a PIS, the double ratio Y becomes

$$
Y \equiv \frac{N_{L}^{1} / N_{L}^{2}}{N_{R}^{1} / N_{R}^{2}}=\left(\frac{1+p_{y} A_{y}}{1-p_{y} A_{y}}\right)^{2}
$$

which is "independent" of $\bar{N}_{L}(\boldsymbol{\theta})$ and $\bar{N}_{R}(\boldsymbol{\theta})$.
Then we can get A_{y} as

$$
\longrightarrow A_{y}=\frac{1}{p_{y}} \frac{\sqrt{Y}-1}{\sqrt{Y}+1}
$$

- This method has an exp. advantage since it does not need $\mathrm{I}, n, \varepsilon, \Delta \Omega$.
- Systematic uncertainty in Ay_{y} can be largely reduced.

Appendix B

Absolute magnitude of polarization

Absolute magnitude of polarization

Experimentally, an asymmetry $A(\theta)=p_{y} A_{y}(\theta)$ can be measured.

- If p_{y} is known, $A_{y}(\theta)$ can be obtained.

```
How to obtain py or }\mp@subsup{A}{y}{}(0)\mathrm{ firstly?
How to obtain py or \(A_{y}(\theta)\) firstly?
```

- If $A_{y}(\theta)$ is known, p_{y} can be deduced. $\}$
\rightarrow Double elastic-scattering method can be used.
Firstly, produce the polarized beam, $p_{1}\left(\theta_{1}\right)$, in 1 st reaction with $2 n_{0}$ "unpolarized" beam.

Absolute magnitude of polarization

Secondly, the p_{y} pol. beam is scattered in 2 nd reaction and measure asymmetry A_{2}.

$$
\begin{aligned}
& N_{L L}\left(\theta_{2}\right)=N_{L}^{\uparrow}\left(1+A_{y}\left(\theta_{2}\right)\right)+N_{L}^{\downarrow}\left(1-A_{y}\left(\theta_{2}\right)\right) \\
& =\frac{n_{0}}{2}\left(1+p_{y}\left(\theta_{1}\right)\right)\left(1+A_{y}\left(\theta_{2}\right)\right)+\frac{n_{0}}{2}\left(1-p_{y}\left(\theta_{1}\right)\right)\left(1-A_{y}\left(\theta_{2}\right)\right) \\
& =n_{0}\left(1+p_{y}\left(\theta_{1}\right) A_{y}\left(\theta_{2}\right)\right) \\
& N_{L R}\left(\theta_{2}\right)=n_{0}\left(1-p_{y}\left(\theta_{1}\right) A_{y}\left(\theta_{2}\right)\right) \\
& \text { Left-right asymmetry } \\
& \text { in 2nd reaction } \\
& \downarrow \text { in } 2 \text { nd reaction } \\
& \begin{aligned}
A_{2}\left(\theta_{2}\right) & \equiv \frac{N_{L L}\left(\theta_{2}\right)-N_{L R}\left(\theta_{2}\right)}{N_{L L}\left(\theta_{2}\right)+N_{L R}\left(\theta_{2}\right)} \\
& =p_{y}\left(\theta_{1}\right) A_{y}\left(\theta_{2}\right)
\end{aligned} \\
& \begin{array}{l}
p_{1}\left(\theta_{1}\right)=\frac{6-3}{6+3}=\frac{1}{3} \\
A_{2}\left(\theta_{2}\right)=\frac{5-4}{5+4}=\frac{1}{9}
\end{array}
\end{aligned}
$$

Absolute magnitude of polarization

$$
A_{2}\left(\theta_{2}\right) \equiv \frac{N_{L L}\left(\theta_{2}\right)-N_{L R}\left(\theta_{2}\right)}{N_{L L}\left(\theta_{2}\right)+N_{L R}\left(\theta_{2}\right)}=p_{y}\left(\theta_{1}\right) A_{y}\left(\theta_{2}\right)
$$

If we arrange for the 1st and 2nd elastic scatterings:

- Same target nuclei $\left(p_{y}=A_{y}\right)$
- Same scattering angles $\left(\theta_{1}=\theta_{2}=\theta\right)$

The measured asymmetry in 2nd scattering can be expressed as:

$$
\begin{aligned}
& A_{2}(\theta)=p_{y}(\theta) A_{y}(\theta)=\left[p_{y}(\theta)\right]^{2}=\left[A_{y}(\theta)\right]^{2} \\
& \longrightarrow\left|p_{y}(\theta)\right|=\left|A_{y}(\theta)\right|=\sqrt{A_{2}(\theta)}
\end{aligned}
$$

- Absolute values of pol. and A_{y} can be obtained by just measuring the asymmetry.
- In order to determine the sign, an interference effect between Coulomb and nuclear interactions is used.

Exercise: Proof the $\mathrm{P}_{\mathrm{y}}=\mathrm{A}_{\mathrm{y}}$ equality for elastic scattering of spin $1 / 2$ particles from a spin-zero target.

Appendix C

Polarization-Asymmetry equality

Polarization-Asymmetry equality

J.S.Bell and F.Mandl, Proc. Phys. Soc. 71, 272 (1958).

Exercise: Under the time-reversal and rotation invariances, vector polarization P and analyzing power A_{y} are identically equal for elastic scattering of spin $1 / 2$ particles from a spin-zero target. Proof this equality.
Consider an incident unpolarized beam of spin $1 / 2$ nucleons with momentum $\overrightarrow{\boldsymbol{k}}_{i}$

- scattered to an angle $+\theta$ (left side) from an unpolarized (spin=0) target,
- the final momentum is $\overrightarrow{\boldsymbol{k}}_{f}$

- the quantization axis $=$ normal to the reaction plane, $\left(\overrightarrow{\boldsymbol{k}}_{i} \times \overrightarrow{\boldsymbol{k}}_{f}\right)$
- the cross section at $\boldsymbol{\theta}$ from the initial spin state $m= \pm 1 / 2 \equiv \pm$ to the final spin state $m^{\prime}= \pm 1 / 2 \equiv \pm$ is described as:

$$
\sigma_{\theta}\left(m^{\prime} \mid m\right)
$$

The polarization of scattered beam is given by

final spin state m'=+
final spin state $m^{\prime}=-$

$$
P(\theta)=\frac{\left[\sigma_{+\theta}(+\mid+)+\sigma_{+\theta}(+\mid-)\right]-\left[\sigma_{+\theta}(-\mid+)+\sigma_{+\theta}(-\mid-)\right]}{\left[\sigma_{+\theta}(+\mid+)+\sigma_{+\theta}(+\mid-)\right]+\left[\sigma_{+\theta}(-\mid+)+\sigma_{+\theta}(-\mid-)\right]}
$$

Polarization-Asymmetry equality

Correspondingly, the asymmetry due to scattering a fully polarized beam ($\mathrm{m}=+$) is:
at $+\theta$ (left side)
at $-\theta$ (right side)

$$
A_{y}(\theta)=\frac{\left[\sigma_{+\theta}(+\mid+)+\sigma_{+\theta}(-\mid+)\right]-\left[\sigma_{-\theta}(+\mid+)+\sigma_{-\theta}(-\mid+)\right]}{\left[\sigma_{+\theta}(+\mid+)+\sigma_{+\theta}(-\mid+)\right]+\left[\sigma_{-\theta}(+\mid+)+\sigma_{-\theta}(-\mid+)\right]}
$$

Polarization-Asymmetry equality

Time reversal means:

- interchanging initial and final states,
- changing the signs of all spins and momenta.

Under time reversal:

$$
\sigma_{+\theta}\left(m^{\prime} \mid m\right) \mapsto \sigma_{-\theta}\left(-m \mid m^{\prime}\right)
$$

Assuming invariance of time reversal, the polarization P becomes:

$$
P(\theta)=\frac{\left[\sigma_{+\theta}(+\mid+)+\sigma_{+\theta}(+\mid-)\right]-\left[\sigma_{+\theta}(-\mid+)+\sigma_{+\theta}(-\mid-)\right]}{\left[\sigma_{+\theta}(+\mid+)+\sigma_{+\theta}(+\mid-)\right]+\left[\sigma_{+\theta}(-\mid+)+\sigma_{+\theta}(-\mid-)\right]}
$$

Time
reversal

$$
P(\theta)=\frac{\left[\sigma_{-\theta}(-\mid-)+\sigma_{-\theta}(+\mid-)\right]-\left[\sigma_{-\theta}(-\mid+)+\sigma_{-\theta}(+\mid+)\right]}{\left[\sigma_{-\theta}(-\mid-)+\sigma_{-\theta}(+\mid-)\right]+\left[\sigma_{-\theta}(-\mid+)+\sigma_{-\theta}(+\mid+)\right]}
$$

Polarization-Asymmetry equality

Then carry out a rotation through $\pi\left(180^{\circ}\right)$ about

- changes $\pm \boldsymbol{\theta}$ to $\mp \boldsymbol{\theta}$
- changes the spin states as $\pm m \rightarrow \mp m$ and $\pm m^{\prime} \rightarrow \mp m^{\prime}$

Under the rotation around k :

$$
\sigma_{+\theta}\left(m^{\prime} \mid m\right) \mapsto \sigma_{-\theta}\left(-m^{\prime} \mid-m\right)
$$

Assuming rotation invariance, the polarization P becomes:

$$
P(\theta)=\frac{\left[\sigma_{-\theta}(-\mid-)+\sigma_{-\theta}(+\mid-)\right]-\left[\sigma_{-\theta}(-\mid+)+\sigma_{-\theta}(+\mid+)\right]}{\left.\sigma_{-\theta}(-\mid-)+\sigma_{-\theta}(+\mid-)\right]+\left[\sigma_{-\theta}(-\mid+)+\sigma_{-\theta}(+\mid+)\right]}
$$

rotation

$$
P(\theta)=\frac{\left[\sigma_{+\theta}(+\mid+)+\sigma_{+\theta}(-\mid+)\right]-\left[\sigma_{-\theta}(-\mid+)+\sigma_{-\theta}(+\mid+)\right]}{\left[\sigma_{+\theta}(+\mid+)+\sigma_{+\theta}(-\mid+)\right]+\left[\sigma_{-\theta}(-\mid+)+\sigma_{-\theta}(+\mid+)\right]}=A_{y}(\theta)
$$

Appendix D

Relation between polarization observables in different frames

Polarized cross sections

It is useful to use the polarized cross sections, I_{i}, introduced by Bleszynski et al.

- spin-scalar

$$
: I D_{0}=\frac{I}{4}\left[1+D_{n n}+D_{q q}+D_{p p}\right]
$$

- spin-longitudinal (q-direction) : $I D_{q}=\frac{I}{4}\left[1-D_{n n}+D_{q q}-D_{p p}\right]$
- spin-transverse (p-direction) : $I D_{p}=\frac{I}{4}\left[1-D_{n n}-D_{q q}+D_{p p}\right]$
- spin-transverse (n-direction) $: I D_{n}=\frac{I}{4}\left[1+D_{n n}-D_{q q}-D_{p p}\right]$

C.M. and Lab. frames

Polarization observabels, D_{i} and $D_{i j}$, are defined in C.M. frame [p,n,q].

- Experimentally, polarization observables D_{ij} are measured in lab. frame.

$$
(i, j) \in\left\{\begin{array}{l}
S: \text { Sideways } \\
N: \text { Normal } \\
L: \text { Longitudinal }
\end{array}\right.
$$

[S,N,L] : incident nucleon
[$\left.S^{\prime}, N^{\prime}, L^{\prime}\right]$: outgoing nucleon

Relation between C.M. [p,n,q] and lab. [S,N,L] frames is as follows:

- $\Theta_{l a b} \quad$: lab. scattering angle for $X(a, b) Y$
- $\Theta_{\text {c.m. }} \quad$: c.m. scattering angle
- $\Omega \quad$: relativistic spin-rotation angle
- $\Theta_{p} \quad$: angle between ki and p-direction

C.M. and Lab. frames

Relation between polarization observables in C.M. and lab. frames becomes:

$$
\begin{aligned}
D_{0} & =\frac{1}{4}\left[1+D_{N N}+\left(D_{S^{\prime} S}+D_{L^{\prime} L}\right) \cos \alpha_{1}+\left(D_{L^{\prime} S}-D_{S^{\prime} L}\right) \sin \alpha_{1}\right] \\
D_{n} & =\frac{1}{4}\left[1+D_{N N}-\left(D_{S^{\prime} S}+D_{L^{\prime} L}\right) \cos \alpha_{1}-\left(D_{L^{\prime} S}-D_{S^{\prime} L}\right) \sin \alpha_{1}\right] \\
D_{q} & =\frac{1}{4}\left[1-D_{N N}+\left(D_{S^{\prime} S}-D_{L^{\prime} L}\right) \cos \alpha_{2}-\left(D_{L^{\prime} S}+D_{S^{\prime} L}\right) \sin \alpha_{2}\right] \\
D_{p} & =\frac{1}{4}\left[1-D_{N N}-\left(D_{S^{\prime} S}-D_{L^{\prime} L}\right) \cos \alpha_{2}+\left(D_{L^{\prime} S}+D_{S^{\prime} L}\right) \sin \alpha_{2}\right]
\end{aligned}
$$

where $a_{1}=\theta_{\text {lab }}+\Omega$ and $\alpha_{2}=2 \theta_{\mathrm{p}}-\theta_{\text {lab }}-\Omega$.
In the elastic scattering ($D_{p q}=-D_{q p}$)and non-relativistic limit $(\Omega=0)$, relation becomes:

$$
\begin{aligned}
D_{0} & =\frac{1}{4}\left[1+D_{N N}+\left(D_{S^{\prime} S}+D_{L^{\prime} L}\right) \cos \theta_{\mathrm{lab}}+\left(D_{L^{\prime} S}-D_{S^{\prime} L}\right) \sin \theta_{\mathrm{lab}}\right] \\
D_{n} & =\frac{1}{4}\left[1+D_{N N}-\left(D_{S^{\prime} S}+D_{L^{\prime} L}\right) \cos \theta_{\mathrm{lab}}-\left(D_{L^{\prime} S}-D_{S^{\prime} L}\right) \sin \theta_{\mathrm{lab}}\right] \\
D_{q} & =\frac{1}{4}\left[1-D_{N N}+\left(D_{S^{\prime} S}-D_{L^{\prime} L}\right) \cos \left(2 \theta_{p}-\theta_{\mathrm{lab}}\right)-\left(D_{L^{\prime} S}+D_{S^{\prime} L}\right) \sin \left(2 \theta_{p}-\theta_{\mathrm{lab}}\right)\right] \\
D_{p} & =\frac{1}{4}\left[1-D_{N N}-\left(D_{S^{\prime} S}-D_{L^{\prime} L}\right) \cos \left(2 \theta_{p}-\theta_{\mathrm{lab}}\right)+\left(D_{L^{\prime} S}+D_{S^{\prime} L}\right) \sin \left(2 \theta_{p}-\theta_{\mathrm{lab}}\right)\right]
\end{aligned}
$$

Special case\#1: Infinitely heavy target and Q=0

Relation in C.M. and lab. frames becomes:

$$
\left\{\begin{array}{c}
k_{i}=k_{f} \\
\theta_{\mathrm{lab}}=\theta_{\mathrm{c} . \mathrm{m} .} \\
\theta_{p}=\frac{\theta_{\mathrm{lab}}}{2} \\
\alpha_{2}=2 \theta_{p}-\theta_{\mathrm{lab}}-\Omega=0
\end{array}\right.
$$

Relation between polarization observables becomes:

$$
\begin{aligned}
& I D_{q}=\frac{I}{4}\left[1-D_{N N}+D_{S^{\prime} S}-D_{L^{\prime} L}\right]=E^{2} X_{L}^{2} \\
& I D_{p}=\frac{I}{4}\left[1-D_{N N}-D_{S^{\prime} S}+D_{L^{\prime} L}\right]=F^{2} X_{T}^{2}
\end{aligned}
$$

Special case\#2: nucleon-nucleon (NN) scattering

Relation in C.M. and lab. frames becomes:

$$
\begin{aligned}
& \theta_{\mathrm{lab}}=\theta_{p} \\
& \theta_{\mathrm{c} . \mathrm{m} .}=2 \theta_{\mathrm{lab}} \\
& \alpha_{2}=2 \theta_{p}-\theta_{\mathrm{lab}}-\Omega=\theta_{\mathrm{lab}}
\end{aligned}
$$

Relation between polarization observables becomes:

$$
\begin{gathered}
I D_{q}=\frac{I}{4}\left[1-D_{N N}+\left(D_{S^{\prime} S}-D_{L^{\prime} L}\right) \sec \theta_{\mathrm{lab}}\right] \\
I D_{p}=\frac{I}{4}\left[1-D_{N N}-\left(D_{S^{\prime} S}-D_{L^{\prime} L}\right) \sec \theta_{\mathrm{lab}}\right] \\
\left.\left(D_{S^{\prime} S}-D_{L^{\prime} L}\right) \cos \theta_{\mathrm{lab}}-\left(D_{L^{\prime} S}+D_{S^{\prime} L}\right) \sin \theta_{\mathrm{lab}}=\left(D_{S^{\prime} S}-D_{L^{\prime} L}\right) \sec \theta_{\mathrm{lab}}\right)
\end{gathered}
$$

Appendix E

Calibration of neutron polarimeters

Calibration of neutron polarimeter

In order to calibrate $\mathrm{A}_{\mathbf{y} \text {;eff }}$ of a neutron polarimeter NPOL:

- We need a neutron beam whose polarization is known.
- In general, the neutron beam is produced by a charge exchange (p, n) reaction at 0°

The neutron beam with a known known polarization can be produced as follows:

- proton polarization $\overrightarrow{\boldsymbol{p}}_{\boldsymbol{p}}$ is known (i=S, N, L).
- $D_{i i}\left(0^{\circ}\right)$ of the (p, n) reaction is known.

The neutron polarization $\vec{p}_{\boldsymbol{n}}$ can be deduced as

$$
p_{n, i}=D_{i i}\left(0^{\circ}\right) p_{p, i} \quad(i=S, N, L)
$$

Calibration method \#1

${ }^{14} \mathrm{C}(\mathrm{p}, \mathrm{n}){ }^{14} \mathrm{~N}\left(\mathrm{O}^{+} ; 2.31 \mathrm{MeV}\right)$

- $\mathrm{D}_{\mathrm{ii}}\left(0^{\circ}\right)=1$ for the $0^{+} \rightarrow 0^{+}$IAS transition
- $p_{n, i}=D_{i i}\left(0^{\circ}\right) p_{p, i}=p_{p, i} \quad(i=S, N, L)$
- Neutron beam polarization = Proton beam polarization
\rightarrow An ideal reaction to produce a polarized neutron beam
- Some disadvantages:
- ${ }^{14} \mathrm{C}$ is a radioisotope (difficult to use as a target).
- IAS at $\mathrm{E}_{\mathrm{x}}=2.31 \mathrm{MeV}$ is weakly excited whereas GT 1^{+}at 3.95 MeV is strongly excited.
- A good energy resolution of $\Delta \mathrm{E} \leqq 500 \mathrm{keV}$ is required.

NPOL at IUCF was calibrated by this method.

Calibration method \#2

${ }^{2} \mathrm{H}(\mathrm{p}, \mathrm{n}) \mathrm{pp}$ at $0^{\circ}\left(\mathrm{GT} \mathbf{1}^{+} \rightarrow 0^{+}\right)$

Under the charge symmetry:

$$
D_{i i}\left(0^{\circ}\right) \text { for }{ }^{2} \mathrm{H}(p, n)=D_{i i}^{\prime}\left(0^{\circ}\right) \text { for }{ }^{2} \mathrm{H}(n, p)
$$

- Double scattering measurement $\rightarrow \mathrm{D}_{\mathrm{i}}\left(0^{\circ}\right)$ can be obtained

Example: $\boldsymbol{i}=\hat{\boldsymbol{L}}$

	${ }^{2} \mathrm{H}(n, p)$	
proton	neutron	proton
$p_{p, L}$	$p_{n, L}=D_{L L}\left(0^{\circ}\right) p_{p, L}$	$\begin{aligned} p_{p, L}^{\prime} & =D_{L L}^{\prime}\left(0^{\circ}\right) p_{n, L} \\ & =D_{L L}^{2}\left(0^{\circ}\right) p_{p, L} \end{aligned}$

- By measuring proton polarizations, $\boldsymbol{p}_{\boldsymbol{p}, \boldsymbol{L}}$ and $\boldsymbol{p}_{\boldsymbol{p}, \boldsymbol{L}}^{\prime}, \boldsymbol{D}_{L L}\left(\mathbf{0}^{\circ}\right)$ can be deduced.

$$
D_{N N}\left(0^{\circ}\right)=\frac{-1-D_{L L}\left(0^{\circ}\right)}{2}
$$

$$
p_{n, i}=D_{i i}\left(0^{\circ}\right) p_{p, i} \quad(i=S, N, L)
$$

\rightarrow NPOL's at LAMPF and RCNP were calibrated by this method.

$\mathrm{GT}^{12} \mathrm{C}(\mathrm{p}, \mathrm{n})^{12} \mathrm{~N}\left(1^{+}\right)$transition w/o knowing $\mathrm{Dii}_{\mathrm{ii}}$

For a spin-flip $\Delta S=1$ GT transition, $D_{i i}\left(0^{\circ}\right)$'s satisry

$$
2 D_{S S}\left(0^{\circ}\right)+D_{L L}\left(0^{\circ}\right)=-1, \quad\left(D_{N N}\left(0^{\circ}\right)=D_{S S}\left(0^{\circ}\right)\right)
$$

Prepare \vec{p}_{p} beam with \hat{S} and \hat{L} components.

$$
\vec{p}_{p}=\left(p_{p, s}, 0, p_{p, L}\right)
$$

- The L-component is measured as the S-component at BLP.

After (p, n) at 0°, neutron polarization $\vec{p}_{\boldsymbol{n}}$ is:

$$
\vec{p}_{n}=\left(p_{n, S}, p_{n, N}, p_{n, L}\right)=\left(D_{S S}\left(0^{\circ}\right) p_{p, L}, 0, D_{L L}\left(0^{\circ}\right) p_{p, L}\right)
$$

With a dipole field, $p_{n, L}$ is rotated into $p_{n, N}$

$$
\begin{aligned}
\vec{p}_{n}^{\prime} & =\left(p_{n, S}^{\prime}, p_{n, N}^{\prime}, p_{n, L}^{\prime}\right) \\
& =\left(D_{S S}\left(0^{\circ}\right) p_{p, S}, D_{L L}\left(0^{\circ}\right) p_{p, L}, 0\right)
\end{aligned}
$$

- rotation in the N-L plane.

$\mathrm{GT}^{12} \mathrm{C}(\mathrm{p}, \mathrm{n})^{12} \mathrm{~N}\left(1^{+}\right)$transition w/o knowing D_{i}

$$
\vec{p}_{n}^{\prime}=\left(D_{S S}\left(0^{\circ}\right) p_{p, S}, D_{L L}\left(0^{\circ}\right) p_{p, L}, 0\right)
$$

Left-Right and Up-Down asymmetries, $A_{L R} \& A_{U D}$, by $p_{n, N}^{\prime} \& p_{n, S}^{\prime}$ are measured:

- $A_{L R}=p_{n, N}^{\prime} A_{y ; \text { eff }}=D_{L L}\left(0^{\circ}\right) p_{p, L} A_{y ; \mathrm{eff}}$
- $A_{U D}=p_{n, S}^{\prime} A_{y ; \text { eff }}=D_{S S}\left(0^{\circ}\right) p_{p, S} A_{y ; \mathrm{eff}}$

Because $2 \mathrm{D}_{\mathrm{ss}}\left(0^{\circ}\right)+\mathrm{D}_{\mathrm{LL}}\left(0^{\circ}\right)=-1, \mathrm{~A}_{\mathrm{y} \text {;eff }}$ can be deduced as

$$
\begin{aligned}
2 \frac{A_{U D}}{p_{p, S} A_{y ; \mathrm{eff}}} & +\frac{A_{L R}}{p_{p, L} A_{y ; \mathrm{eff}}}
\end{aligned}=-1 .
$$

- Ay;eff can be calibrated w/o knowing $\mathrm{D}_{\mathrm{i}}\left(\mathrm{O}^{\circ}\right)$ beforehand.
$\mathrm{D}_{\mathrm{ii}}\left(0^{\circ}\right)$ can be deduced as:

$$
D_{L L}\left(0^{\circ}\right)=\frac{A_{L R}}{p_{p, L} A_{y ; \mathrm{eff}}} \quad D_{S S}\left(0^{\circ}\right)=\frac{A_{U D}}{p_{p, S} A_{y ; \mathrm{eff}}}
$$

NPOL3 at RCNP was calibrated by this method.

Appendix F

Proton spin precession in magnetic fields

Proton spin precession in a magnetic field \#1

In dipole, the relation between the proton momentum k and the magnetic field B is:

$$
\vec{k} \perp \vec{B} \quad\left(B_{\perp}=\vec{k} \times \vec{B}\right)
$$

- Spin is precessed in the medium plane (in the bending plane).
- A relative spin precession angle θ is given by

$$
\theta=\gamma\left(\frac{g_{p}}{2}-1\right) \Theta
$$

- $\mathrm{g}_{\mathrm{p}}=5.586$: proton g -factor
- $\Theta \quad$: bending angle
- y : Lorentz factor

Example (injection line from AVF to ring @ RCNP)

- $\theta \doteqdot 90^{\circ}$ for $\mathrm{Tp} \doteqdot 60 \mathrm{MeV}$ and $\Theta=45^{\circ}$
- By bending $\Theta=45^{\circ}$, the polarization vector is precessed by 90°. Therefore

$$
\hat{L} \rightarrow \hat{S} \quad \hat{S} \rightarrow \hat{L}
$$

Proton spin precession in a magnetic field \#2

In solenoid, the relation between the proton momentum k and the magnetic field B is:

$$
\hat{k} \| \vec{B} \quad\left(B_{\|}=\hat{k} \cdot \vec{B}\right)
$$

- Spin is precessed around k (perpendicular to the beam direction).
- Spin precession angle ϕ is given by

$$
\phi=g_{p} \frac{\mu_{N} \cdot B_{\|} L}{\beta \gamma \cdot \hbar c}
$$

- $g_{p}=5.586$
: proton g-factor
- $\mu_{N}=3.15 \times 10^{-14} \mathrm{MeV} \cdot \mathrm{T}^{-1}$: nucleon magneton
- $\boldsymbol{B}_{\|} \boldsymbol{L}$ in unit of Tm
: magnetic field \times length
- $\boldsymbol{\beta} \boldsymbol{\gamma}$
: Lorentz factors

Example (injection line from AVF to ring @ RCNP)

- $\phi=90^{\circ}$ for $\mathrm{Tp}=53 \mathrm{MeV}$ and $\mathrm{BL}=0.600 \mathrm{Tm}$
- By passing in $B L=0.6 \mathrm{Tm}$, the polarization vector is precessed by 90°. Therefore

$$
\hat{\boldsymbol{L}} \rightarrow \hat{\boldsymbol{S}} \text { or } \hat{\boldsymbol{N}}
$$

