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Polarizations and spin observables

< What is polarization

* Induced Polarization Py and analyzing power Ay
< Parity conservation

<% Spin transfers Dj;

< Spin-parity dependences on Djat O degrees

% Spin measurements

<+ Experimental evidence for usefulness of Dj;

< Homework



Fermi and Gamow-Teller excitations by (p,n)

Excite Fermi and Gamow-Teller transitions by (p,n)
* Fermi (AS=0)
- Gamow-Teller (AS=1)

Spin-transfer to the target

Spin-transfer in (p,n)
(spin-transfer b/w p and n) |

Target nuclei

*» What is spin/polarization

* Relation between spin-transfers and
target excitations

“* What is the best energy for AS=1 excitations

Ref.

Lecture by Ichimura-san
“Spin Observables”

. Detector/Polarimeter

b Neutrons

*Energy Th
*Spin (polarization vector)

Nuclear force
(meson)

#

Proton beam
*Polarized (spin aligned)



What is polarizations?



What is polarization

In quantum mechanics, polarization is often treated with a density operator

Simple explanations would be useful for understanding the essence of spin physics with
nuclear reactions

Nucleon (proton and neutron) is a particle with spin 1/2
- Two magnetic substates (m=+1/2) along a quantization axis
e often called as up-spin (m=+1/2) and down-spin (m=-1/2) states.
- An assembly of particles (incident beam, scattered particles, etc.)

— can be described by the population p(m) for each m state.

Then “polarized” and “unpolarized” mean:
- polarized: p(1/2) # p(—1/2)
» unpolarized: p(1/2) = p(—1/2)
with the normalization of

p(1/2) +p(—1/2) =1



What is polarization

Instead of using population parameters
The distribution of populations can be described in terms of “moments”
- These moments are called as “polarization”

« For nucleons, it is simple as explained in the followings
(deuteron with spin=1 is rather complicated)

The first moment (polarization py) with respect to y-axis is defined as

— 1 ~ - = ~

™m

* py is bounded by -1 = py = +1

Both populations, p,(+1/2) and p,(—1/2) , can be specified by p: as follows:
3 1
Py(+1/2) = 5(1 + py)

Pu(=1/2) = (1 - p,)



Induced polarization Py and
Analyzing power Ay



Induced polarization py

Consider nucleon-induced two-body scattering (reaction):

N : incident nucleon
A : target nucleus

N’ : scattered nucleon
B : residua nucleus

+N+A-N+B or ANN)B

unpolarized
Dy = L 7

. p.. = +0.2

MIXIY g
IEXXXXX; (k9

polarized
14% p, = —0.2 — —p
v y—axis || k; X ky
0 = Or
(normal to the reaction plane)

In general, polarization is produced even with an unpolarized beam.

« Spin-orbit interaction is mainly responsible for producing the polarization.

Exercise: Because of the parity conservation, only the py component takes a finite value.
Why do the other px and p, components become 07?




Parity inversion and conservation

Parity inversion (transformation) : P

In three dimensions, simultaneous flip in the sign of all three spatial coordinates:

YRE

P can be decomposed to the mirror reflection M and the 11(180°) rotation R.

» For example, the reflection by the mirror on the x-y plane gives:

NRE

« Then the rotation around the z-axis by 8=11(180°) gives: (just changing your view point)

Xr — &L
R,.:| vy | —|—vy
2)-
Thus the parity inversion is physically same as the Mirror reflection.

Parity conservation of nuclear forces (strong interaction) means:

The probability of a process by nuclear forces
= The probability of the mirror-reflected process (=patrity-inverted process)




Constraints on polarizations by parity conservation

The parity conservation gives some constraints on polarizations:

 For an illustrative purpose, it is convenient to describe the spin (polarization)

¢ <&

down spin(1)

as a spinning top (rotation).

® <@

up spin(1)
P.=0 can be shown as follows:

« Consider the following process:

- An unpolarized nucleon is scattered at 6.

* The scattered nucleon is polarized
to the +z axis (helicity=+).

 Mirror reflection on the x-z plane
(scattering plane).

* In mirror image:
 The nucleon is also scattered at 0.

« The scattered nucleon is polarized
to the -z axis (helicity=-).

Mirror
Image

Both processes cause with same probability.
— Nucleons are NOT polarized to z-axis (Pz=0)




Analyzing power Ay

When incoming beam N is polarized in A(N,N’)B
- The numbers of scattered particles to left and right, NL and NRg, are different in general
 due to the spin-dependent interaction such as the spin-orbit interaction
- The left-right asymmetry A defined by (Rix k) ¥ g5 x 2)
A(9) = N2(®) = Nr(0) /
Nr(0) + Nr(0)

Is proportional to both:

* beam polarization : py
» analyzing power : Ay = specific to the reaction \{@

- Therefore, Ay(0) is given by

Dy - Ay(g) —

Npr(0) — Ngr(0)
Nr(0) + Nr(0)
Exercise: Find Ay in the case of NL.=1200 and Nr=800 for py = 0.6.

_ 1 Np—Ngp_ 11200800
Y p,NrL+Ngr 0.61200-+800

A




Spin-dependence of yields

Numbers of scattered particles to left and right are expressed as

NL(0) = Ne(0) (1 +pyAy(0) = T-ner - 007 AQL(L+p,4,(0))

Na(0) = Na(0)(1 — pyAy(0)) = I-n-cr- 27 - AQR(1 — p, 4, (0))
_——

In general, N1, (0) and Nr(0) depend on N r

* numbers of incident and target particles: | and n
» cross section do/dQ (for unpolarized beam)

+ Solid angles and efficiencies of left and right detectors : AQ|/r and LR

If Nz, (0) = Ng(0) for an ideal case, A,(6) can be easily deduced as
Npgr
(1 —pyAy)
I Np — Nr |Exercise : In practical, N1(0) # Nr(6).

— Ay — Dy N; + Ng In this case, how can we measure Ay
precisely with small systematic uncertainty?

Np@) = — L — Np(o) =
(1+ pyAy)




Absolute magnitude of polarization

Experimentally, an asymmetry A(0) = pyAy(6) can be measured.
« If pyisk A tained. . .
Py is known, Ay(B) can be obtained } How to obtain py or Ay(6) firstly?
- If Ay(B) is known, py can be deduced.

— Double elastic-scattering method can be used.

Exercise 1:

Explain how to obtain py or Ay firstly by the double scattering method referring
Appendix B of this lecture.

Exercise 2 :

In the double scattering method, the Py=Ay equality for elastic scattering of

spin 1/2 particles from a spin-zero target is used. Proof this equality referring
Appendix C of this lecture.




Spin transfer D;j;

Ref. Lecture by Ichimura-san



Polarization transfer D;; in PWIA

- M.Ichimura, H.Sakai, TW., Prog. Part. Nucl. Phys. 56, 446 (2006).
Polarization transfer Djj for X (a,b)Y (also known as Dji and Kj)

— relate the i-axis component of polarization of outgoing nucleon
to j-axis component of incident nucleon

- Axis definition and example for Ds. Longitudinal I, = k
Sideways
Y ~ IA-cz X l%f
Longitudinal ., Normal N = — _
. — N,%)/L ki X kg
S N
Sideways S = N X L
N(%)—» L
In general, there are nine Dj's (3x3 matrix elements).
— The parity conservation allows finite values (20) only for five Dj's
DS/S DSIN DSIL _DS/S O DSIL
Dn's Dny'ny DN pa—rity> 0 Dnyny O
.DLIS _DLIN DLIL DLIS O DL/L

conservation

Exercise: Under the parity and rotation invariances, the polarization transfer
Ds'n = Dn's = Dnve = Den = 0. Proof this equality.




T-matrix and NN amplitudes

Djj is defined using T-matrix, T, and Pauli spin matrix, o, as

D Tr[To; T o;] (I _do lTr[TT‘L]>
Y Ty[TTT) T dQ 4

T-matrix from the ground state |0) to the excited state |m) for N-A scattering
in PWIA is given by

T(q) = (m|M(g)e™*77|0)

where

G (q) : momentum transfer

+ M (q) : nucleon-nucleon (NN) scattering amplitude

M.Ichimura, H.Sakai, T.W., Prog. Part. Nucl. Phys. 56, 446 (2006).



KMT notation and g-frame

In so-called KMT (Kerman-McManaus-Thaler) notation, M(q) is written as:

M(q) = A+ Boi1ao2a + C(01a + 024) + Eo14025 + Fo1p02p

with the following coordinate system (g-frame). &
outgoing IA'J’
. nucleon
* N’
kf ,,,,,

q

S
incident nucleon 9
AN AN q
N L-@» : P
n k; \‘Hq

i
q=ky—k; 4
—> A=
n = _’f,; X E f |n|
p=dqxn
A.K.Kerman, H.McManus, and R.M.Thaler, Ann. Phys. 8, 551 (1959).




Spherical tensor expression of M(q)

A.K.Kerman, H.McManus, and R.M.Thaler, Ann. Phys. 8, 551 (1959).
It is convenient to take the g-direction as a quantization axis.

q is the direction of the “impact" to the target.

The NN amplitude is written with spherical tensor operators as:
171
M(q) = Mgy + E (—1)“’0'“M“

—— L
spin-scalar  spin-vector |
- o,' are tensor operators of rank-1 of the target nucleon defined by:

1 1 1 1 1

Oy = 014 o0; = ———= (014 + 101p) o_, = —=(01a — t01p)

V2 V2

« Mo and M, are operators of the incident nucleon defined by:

1 :
My = A + Coas My =—F(C+Bffzﬁ—ZF02ﬁ)
M} = Eo; M, = —(C + Bo2s + iFo3p)

V2

A nucleon (p or n) has the isospin (1) degree of freedom.
— Each amplitude in M(q) has isoscalar (IS) and isovector (V) terms.

* For example, explicit form of A is » |Here, we focus on the IV case ((o,n), etc),
A= Ais + AyvTmy - T and thus express Ay as A for simplicity.

Isospin




N-A T-matrix

N-A T-matrix for an isovector (IV) 0+ = J™ excitation is expressed as:

T(q) = (J|e *T7r} |O)7’1 My + Z (J|e™* i|0)7‘1 M1
p=—1
w W
spin-scalar spin-vector
AS =0 AS =1
Target operators, e'd" and eiq'ﬁa; , can be expressed in standard tensor forms:

= Z ngKO (plane-wave expansion/Rayleigh equation)

£
e o Z pe(1€p0|J )T (£s)
pe = \/23 + 1vVar (=) je(qr)
7 _ 7, 1 p 1 Tensor operator of rank J
TJ (ES) Z/ (ES“ H lJM)YE T composed of operators Y”’ and a
[y

A.K.Kerman, H.McManus, and R.M.Thaler, Ann. Phys. 8, 551 (1959).



|
N-A T-matrix
A.K.Kerman, H.McManus, and R.M.Thaler, Ann. Phys. 8, 551 (1959).
Using the standard formulas for reduced matrix elements, for example

we get the isovector spin-vector T-matrix as

T(q) = (—1)7~* (1£p0| T ) Q5 M

Vv2J +1
with the reduced nuclear matrix element Q,':

& = (J||peT5(£s)7T1]|0)

Now we can calculate the specific observable for a 0+—J™ transition with Q.
Example: IDnn for 0t— 27 (J=2, L=1)
1
ID,,, = Z'I‘I'[Ta'nTTa'n]

Note: o;0; = i€;jroK + 055 {1, 7,k} = {n,p, q}

72 2 - 2J

b=J—1\2
2J 4+ 1 (@ )



Polarization observables and transition densities

H.Sakai, “Lecture note at RIKEN Winter School” (1993).
Polarization observables in PWIA can be expressed with transition densities.

natural-parity, AS=0 Xo = V4ArQy
natural-parity, AS=1 X5 =vV2rQ5’

unnatural-parity, AS=1 2w 2d g4 2w(2J + 1) o411
. . . XL — QJ o QJ
(spin-longitudinal) 2J +1 2J +1

(spin-transverse) =

2J +1 7 2J +1 7

unnatural-parity, AS=1 2w(J + 1 _ 2w - J
parity, X \/( )Qe.]l_l_\/ QEJ—I—l

observable natural parity unnatural parity
do
I=_—
ds)

ID,, (C? —B? — F)XZ + (A% — CHX; (C? — B®> — F) X2 + E*X:

(C*+ B*> + F)) X7 + (A’ + C*HX] (C?* + B®> + F?)X] + E*X7}

ID,, (C? + B? — F?) X2 + (A2 + C?) X (C? + B? - F?)X2 — E?X2

ID,, (C? — B?>+ F*) X2 + (A2 — C?) X (C? — B®*+ F?)X2 — E*X?

IS IO 2Tm(BC*)X/2 — 2Im(AC™) X2 2Im(BC*) X7

2Re(BC*) X7 + 2Re(AC*) X 2Re(BC*) X7




Polarization transfer D;; at O degrees

From spatial symmetry, Note:

- B = E (two transverse directions are identical ) and C=0 At 0°, the spin-longitudinal transition,
XL, is caused by the F-term in KMT.

Polarization transfers, Dnn and Dy, in PWIA in laboratory frame.

Relations between polarization observables in g-frame and lab.-frame are given in Appendix D.
unnatural parity
(J=Lx1)

AS=0 AS=1 AS=1

Polarization natural parity (J=L)
observables

—F2X?2
DnnN _I_l 0 L
(=Dnn) 2B2X2 + F2X2
—2B%X?2 F2X?2
DL 11 1 T T L
(=Daqa) 2B*X1 + F? X}
2DnNN+DL
(=qu+Dnn+Dpp) +3 —1 —1

* In general, a natural parity transition is the mixed transitions of AS=0 and 1.
* Dnn(0°) = 0~1 and D (0°) = -1~1

« AJ"=0"(Fermi, IAS) is a special case with AS=0 — Dnn(0°)=D_(0°)=+1

H.Sakai, “Lecture note at RIKEN Winter School” (1993).



Dii(0°) in PWIA for several AJ™

H.Sakai, “Lecture note at RIKEN Winter School” (1993).

X2 J+1 X2 J
T J=J.=L4+1 — L = J=Jo =L -1
X2~ 2J ( ~ 1) X2 2(J+1) ( < )
Transition AS X2/ X2 Dnn(O°) D.L(0°)
Fermi +1 +1
Gamow- —F? —2B? + F?
Teller 2B2 | F2 2B2 4 F2
Dipole 2 +1 +1
—1 +1
0 —1
—2F? —3B? 4+ 2F?

3B?% 4 2F?2 3B?% + 2F?




Dii(0°) in PWIA for several AJ™

H.Sakai, “Lecture note at RIKEN Winter School” (1993).
If the central NN interactions are dominant and the tensor interactions are negligible.

« B=F (central only)
 which is appropriate at Tp < 200 MeV (at T, > 200 MeV, tensor int. are significant)

Transition AJ~™ AS X2/ X2 Dnn(O°) D.L(0°)

Fermi O+

Gamow-
Teller




Spin measurements



Polarimeter (FOM)

Polarization ( p ) analysis in a polarimeter
+ Measure the left-right (up-down) asymmetry: A

« A=p * Ayerf Ayeff = effective analyzing power of a polarimeter (Ay of polarimetry)

In general, polarization is measured as follows:
- A polarized beam (particles) bombards on an analyzer target.
* Incident particles are scattered to left or right, and detected with efficiency €

 Here ¢ is defined as

Number of detected particles
Number of incident particles

- The analyzing reaction produces the left-right asymmetry due to
its effective analyzing power Ay:eff

Dependence of the polarimeter performance (ability for determining p) on € and Ay:eff?




Polarimeter performance

For 2no incident particles, detected numbers of left and right detectors of a
polarimeter are given by

N = eno(1 + pyAyer) } \ Nt — Ng
NR = €’n0(1 — pyAy;eff) -

Statistical uncertainty of A is given by

(AA)? = ( ;ﬁ)z (ANL)? + (:TA) (ANR)?

R
AN Np
(NL + Nr)® -
Statistical term
Statistical uncertainty of p is given by (incident particle number)
A AA 1 1
Py = ~
Y Ayeft kAy;eﬂ" VE

'

intrinsic to polarimeter = Determine the performance

of a polarimeter




Figure of merit of a polarimeter

Since Apy is given by
1 1

- vV 210 . \/E . Ay;eﬂ'

Ap,,

the “Figure Of Merit” (FOM) of a polarimeter can be defined as

1 1
FOM = ¢ . A% — Ap =
ysefl Y v2n9 v/FOM

Low performance High performance

< Fow Lo 2

Typical performances of polarimeters
« £ =10 (for protons) ~ 10 (for neutrons)

Typical/designed values:

« Ayeff = 0.1 (intermediate energy for neutrons) ~ 0.9 (low energy)



Proton “beam” polarimeter

p+p scattering Is generally used because
- moderate Ay(~0.4) and do/dQ

* easy to measure
do/dQ and Ay for p+p at T,=200-400 MeV

— 100 — T T T ] 100 - I - I -
< | '
2 5ot p+p 12 50“ ﬂ
Q0 - 1
g =0r 1 8 =20} |
c 10F G 10§ ;
ie) . [ ] 3 . : :
S — 200Mev - % %; Ay takes a maximum
«© - :
s 2k 300 Mev 1 & 2t - at Bip=17° for 200-400 MeV
S
S —— 400MeV 3
1 A ] A ] A ] 1 ] ]

°Ol20l40l60l80 °Ol60 120l180
O1ap. (deg) 0cm. (deg) http://gwdac.phys.gwu.edu



B.G. in the polarization analysis

In general, a polyethylene sheet (CH>) is used as a hydrogen target
- B.G. from the C-target () s

» At B=17°, quasi-elastic scattering (QES) is dominant (p+p in C) gg

A, for (p,p’)-QES on 2C at LAMPF/TRIUMF/RCNP
0.6

- *C(p,p") at T, =800MeV
+ QES on ?C should be suppressed 0.5

to maximize the FOM of a polarimeter

- Systematically smaller than Ay for p+N

04|

q 0.3

0.2

L4
L4
L4
— Vs
0.1 .

L4

4
-

O.O.."I""I""I"'lllllnl....
C.J.Horowitz, M.J.Igbal, Phys. Rev. C 33 (1986) 2059. 0 5 10 15 20 25 30

J.A.McGill et.al., Phys. Lett. B 134 (1983) 157. Scattering angle 6,,, (deg)



Kinematical coincidence

Kinematical coincidence is useful to suppress the QES background

* p+p scattering : 2-body scattering = Recoil angle 0r : fixed

* 12C(p,pp)''B  : 3-body scattering — 6r : varied (due to Fermi motion of target-N)
Measure scattered(B) and recoiled(Br) protons “in coincidence”

- QES events can be significantly suppressed.

LB

30000 [

25000 [

20000 -

15000 |-

Yield (Counts)

10000 |

5000 [

35000 ——T—
— CHy(p,p) PP T,=197MeV

— CH,(p,2p) |J1 9=27° E

E‘ 2¢(g.s.)

kinematial 'rll

coincidence

» 120(4.4MeV)

QES

e —

A ] A ] ol

O "
-10 O

TOP view

10 20 30 40 50 60 70 80 90
Energy transfer (MeV)



Neutron polarimeters

In general, a neutron polarimeter consists of analyzer and catcher planes:

« can measure arrival time and 2D position

Both planes are made of scintillator (H+C) ‘NPOLS at RCNP‘ ‘\catcher

In the analyzer, n+p scattering will occur
- arrival time — neutron Time-Of-Flight (TOF)

Doubly scattered neutron or recoil proton is also
measured in the following catcher

« 2D positions in analyzer and catcher

analyzer

 arrival time difference neutron
— TOF of double scattering particle. , ““‘ e

— double scattering angles (6,¢) Ay for n+p
(346 MeV)

Left/Right/Up/Down scatterings can be defined by (8,})
— Left-right asymmetry — pnan (nOrmal)
— Up-Down asymmetry — pn,s’ (sideways)

Wiy,

®

0 20 40 60 80 0 20 40 60 80

O1ab (deg)




Kinematical selection

The analyzer is made of scintillator including H and C.
- The n+C events including QES become B.G..
» The FOM should be maximized
by eliminating these events.
Kinematical selection for n+p events

- TOF and (8,9) for double scattering is measured.

20 | R . % .9, o | o
» TOF vs. 6 for n+p is known: ALk A i s .
1 LT Y. v
o SR :
« QES and y-ray B.G. . :;.l‘i;ry e s
. . A . L
can be eliminated. MO NS e i
. .’; ; q ';. k
—_ Q‘ ‘;'I' 1
ARCE RN
o . -
< i )
8 [ :};
. . . T i G -
kinematical selection PR . s AR
for n+p events | NG P
0 il F et e
-60 -30 0 30 60
0 (deg)

R.Nakajima, Graduation thesis, Kyushu University (2016).



FOM of neutron polarimeters

: Note:
FOM of modern neutron polarimeters
. P ! Calibrations methods of a neutron polarimeter
FOM = 2~5x10* are described in Appendix E of this lecture.

One in a few thousand neutrons entering a polarimeter is effective for polarization analysis.

Tn range TOF path length FOMx104
(MeV) ) (Tn)

Facility

4.94
1.73
2.00
LAMPF 300-800 600 318 MeV) 6,7,8]

[1] H.Sakai et al., Nucl. Instrum. Methods Phys. Res. A 320, 479 (1992).

[2] H.Sakai et al., Nucl. Instrum. Methods Phys. Res. A 369, 120 (1996).

[3] T. Wakasa et al., Nucl. Instrum. Methods Phys. Res. A 404, 355 (1998).

[4] C.D.Goodman et al., IEEE Trans. Nucl. Sci. 25, 2248 (1979).

[6] M.Palarczyk et al., Nucl. Instrum. Methods Phys. Res. A 457, 309 (2001).
[6] J.B.McClelland et al., Nucl. Instrum. Methods Phys. Res. A 276, 35 (1989).
[7] D.d.Mercer, Ph.D. Thesis, University of Colorado, 1993.



Experimental investigation for
AS=0 and AS=1 strengths using Dj;



Power of spin transfers

Polarization transfer observable Dj:

 Direct measure of the spin transfer

PWIA predictions at T, < 200 MeV (Central components of the NN interaction are dominant):

Transition AJ~™ AS X712/ X2 Dnn(O°)

Fermi O+ 0]

GT 1+ —5 —5

Examples at 0° and Tp=120-200 MeV for *C(p,n)'*N:
Well-known Fermi and GT transitions:
« Fermi (AS=0)at2.3MeV —=Dnn=DuL=1 >0
- GT (AS=1) at3.9MeV —- Dnn=DuL=-1/3<0

Are polarization transfers Dj really useful for distinguishing Fermi and GT states?
(consistent with PWIA predictions?)




Demonstration : “C(p,n)'*N

Fermi IAS (0*) and Gamow-Teller (1+) “e@.a)N
peaks are observed. 50 T ] ]
Fermi IAS (0*) : 0 t { } l .
B - o 40 GT |
* 0D >0 (- D = +1) 2 (14) || 80 Mev 120 MeV 160 MeV]
Gamow-Teller (1) : > 30 -
5 307
« oDNn < O (- Dnn = -1/3) % :
& 204 -
S 1ol
We can identify F and GT transitions with Dj;. ° l
" JR L)
|
How about *°Zr(p,n) Q‘E 0 rnL :
in which GTR was observed? ©
10}
_20 I I

| 51 0 5 0
Excitation Energy (MeV)

J.Rapaport and E.Sugarbaker, Ann. Rev. Nucl. Part. Sci. 44, 109 (1994).



Spin-vector dominance for *°Zr(p,n)

I PWI A/DWI A - Excitgtion %r;ergy of 9°Nb1§MeV) 50 Excitgtion eargergy (z)(f NblgMeV) .
n 10 :
GTR
m% 8F %Zr(p,n) :
© GT (AJ7=1%) §Z‘ | :
Dnn ~ —0.3 P 300 MeV 5
mb < :
« [AS (A\Jn:O"') B Eaf :

Dnyn = +1.0 .
At 300 MeV 8
IAS can be identified in Dnn

whereas it is not seen in o 2 |

* Dnn is powerful to
identify AS=0 and AS=1

* |AS is relatively minimum .|

2

Continuum beyond GTR

« AS=1 dominance

searching the GT strength | o

10

« Dnn is similar to that of GTRs |

The 300 MeV data is ideal for | = |

[200 Mev]

GT(1") N

.

l —

i)

50

40

30

20

10

excitation energy E, (MeV)

in the continuum

excitation energy E, (MeV)

T.N.Taddeucci, Can. J. Phys. 65, 557 (1987), TW. et al., J. Phys. Soc. Jpn. 73, 1611 (2004).




Homework #2



Homework #2

1.Show that, in a proton-nucleus scattering with unpolarized protons, the scattered protons
would be polarized due to the spin-orbit interaction.

2. Under the parity invariance and rotation invariances, the polarization transfer
Duen = 0. Proof this equality.

3.In an analyzing power measurement, Nz, (0) # Ng(0) in general since it is very difficult
to set AQ| = AQr.

How can we measure Ay precisely with small systematic uncertainty? (Hint: see Appendix
A of this lecture).

4. Explain how to obtain py or Ay firstly by the double scattering method referring Appendix
B of this lecture.

5. In the double scattering method, the Py=Ay equality for elastic scattering of
spin 1/2 particles from a spin-zero target is used. Proof this equality referring Appendix C
of this lecture.

6. Under the parity invariance and rotation invariances, the polarization transfer

Dun = 0. Proof this equality.



Homework #2 (cont’d)

7. There are several conventions for the NN scattering amplitude. In the following
conventions, express the a-¢ terms by using the A—F terms in the KMT convention.

q —
Q =
n=qgxQ
*
spin-singlet spin-triplet spin-orbit
l—01- 0 3+o01-0 ol N
M(Ecm,0) = a———— +f~—— —— + (01 + 02) - 7
+6512(g) + €512(Q) tensor operator
direct exchange R ) )
2 S12(@) = 3(0q - @) (03 - ©) — 01 - O
tensor
(2)Love non-spin spin-orbit spin-longitudinal

) r—H P e
M (Ecm,0) = a+ B(o1 +02) -t + (o1 - §)(o2 - §)

+d(o1 X §G) - (o2 X q)

R . spin-transverse
+€ {(0'1 X M) (o2 Xn)— (01 XQ) - (02 X Q)}



Homework #2 (cont’d)

8. In general, the quantization axis of the polarized proton beam is the normal direction
(normal to the bending plane of the beam line). In order to measure a complete set of
polarization transfer Djj, we also need the proton beams polarized to longitudinal and
sideways directions. At RCNP (Osaka, Japan), these polarized beams can be made by
using one 45° dipole and two solenoid magnets as shown in Fig.1. Please explain how
can we obtain the longitudinally and sideways polarized proton beams by using these
magnets referring to the Appendix F of this lecture. Assume that the proton beam energy
Is 60 MeV.

Solenoid#2
I 45° dipole

to ring <

Solenoid#1

from AVF

Fig. 1
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Practical measurement of Ay



Practical measurement of Ay

In practical, N7 (0) #£ Ng(0) since itis very difficult to set AQ. = AQr
Thus, we need the data as follows for two different polarizations: py' and py?
Nll, :NL(H)(1‘|‘P?1JA?J) NIZ, :NL(H)(l‘l'psz)

. _ . for py! , B R for py?
Ng = Ngr(0)(1 — p,Ay) Ng = Ngr(0)(1 — p,Ay)

If we set py’ = -py® = py by tuning a PIS, the double ratio Y becomes

_ N},/NI% o <1+pyAy>2
N NI%/NI%Z - \1 —PyAy

which is “independent” of N, (0) and Ngr(0) .
Then we can get Ay as
— A, = L VY -1
Py \/? + 1

+ This method has an exp. advantage since it does not need I, n, &, AC.

« Systematic uncertainty in Ay can be largely reduced.
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Absolute magnitude of polarization



Absolute magnitude of polarization

Experimentally, an asymmetry A(6) = pyAy(0) can be measured.
- If py is known, Ay(B) can be obtained. . .
Py | wn, A/0) How to obtain py or Ay(0) firstly?
- If Ay(B) is known, py can be deduced.

— Double elastic-scattering method can be used.

Firstly, produce the polarized beam, p1(01), in 1st reaction with 2no “unpolarized” beam.
N; =Ny Nj —Nj

P1(91) — —
N;—: _I_ Nil-: o 6 —3 1
p1(91) = m = g Nrr *
- o 5—4 1
NL — ? (1 _l_ P1 (91)) Ay(03) = —— = = analyzer
5+ 4 9
—

[2nd reaction]

o Nr = mno 92
NE= "1~ pi(61)) ’

polarizer

210 [1st reaction] ¢ Nir
¢¢¢¢¢%¢¢¢ ____________________________________
22222222




Absolute magnitude of polarization

Secondly, the py pol. beam is scattered in 2nd reaction and measure asymmetry Ao.

Npr(62) = NI (14 Ay(62)) + NE(1 — Ay(62))

= 2214 py(01) (1 + 4,(62)) + -7 (1 — Py (61)) (1 — 4, (62))

= no(1 + py(01)Ay(62))
Nrr(02) = no(1 — py(01)Ay(02))

l Left-right asymmetry

in 2nd reaction p1(61) = 21? _ ; N S
5-4 1
Ay (0y) = r(02) = Nur(Ba) [ 40 =ig=g 05, 4Y
- Nirp(62) + NLr(62) NL = ng Vo,
polarizer ¢ ¢ * *
p— p’y(el)Ay(HZ) ¢¢¢¢2£/0 ¢gs‘;reaction] ¢ NLR
e




Absolute magnitude of polarization

_ Npp(62) — Npr(02)
Az(02) = N11(02) + Non(6a) = py(01)Ay(62)

If we arrange for the 1st and 2nd elastic scatterings:
- Same target nuclei (py = Ay)
- Same scattering angles (81 = 62 =6)

The measured asymmetry in 2nd scattering can be expressed as:

A2(0) = py(0)Ay(0) = [py(8)]° = [Ay(8)]?

— [Py (0)| = [Ay(0)] = V/A2(0)

e Absolute values of pol. and Ay can be obtained by just measuring the asymmetry.

- In order to determine the sign, an interference effect between Coulomb and nuclear
interactions is used.

Exercise: Proof the Py=Ay equality for elastic scattering of spin 1/2 particles from a
spin-zero target.
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Polarization-Asymmetry equality



Polarization-Asymmetry equality

J.S.Bell and FMandl, Proc. Phys. Soc. 71, 272 (1958).

Exercise: Under the time-reversal and rotation invariances, vector polarization P and
analyzing power A, are identically equal for elastic scattering of spin 1/2 particles

from a spin-zero target. Proof this equality.

—

Consider an incident unpolarized beam of spin 1/2 nucleons with momentum k;

- scattered to an angle +0 (left side) from an unpolarized (spin=0) target,
(kﬁi X ktf)

« the final momentum is Ef

 the quantization axis

= normal to the reaction plane, (Ez X Ef)

. the cross section at 0

from the initial spin state M = =
to the final spin state m’ = 4

IS described as:
og(m'|m)

-1/2
-1/2 =+

A

4 0+o0(—|+)

?
7

The polarization of scattered beam is given by

final spin state m’=+

/

final spin state m’=-

f_ﬁ f_&
' [oro(+ ) + oo (+—)] = [ro(—4) + ora(—|—)
PO) = (o o) + oso ()] + [os0(=1+) + o0(=I—)




Polarization-Asymmetry equality

Correspondingly, the asymmetry due to scattering a fully polarized beam (m=+) is:
at +0 (left side) at -0 (right side)

 [oro(+1H) + oro(=H)] = [o—o(+|+) + o—o(—]+)]
) = (1) + oo (=) + [0 (+) + o—o(= )]




Polarization-Asymmetry equality

Time reversal means:

* interchanging initial and final states,

« changing the signs of all spins and momenta.

Under time reversal:

oro(m'Im) — o_g(—m|m’)

A 7<o—+9$—|+) ; A ;
ime o_o(—|+)
__¢,_’ 1o //, ﬂi’ ‘%;T— //,

Assuming invariance of time reversal, the polarization P becomes:

 oso(+ ) + oo (+1=)] — [ora(—I4) + oro(—|-)
O R o) + o (DI o)+ oso(—1)]
oversal  [o—o(—=) + o—o(+|=)] — [o—a(=I+) + o—o(+]-H)]
—> PO = D) T oo ()] + [o—o (1) + oo (+1 )]




Polarization-Asymmetry equality

Then carry out a rotation through it (180°) about

 changes +60 to @

- changes the spin statesas —m — M and —T—m — FmM

Under the rotation around k:

q 1 4
/ r7(180°) /
>

rotation

> ﬁ —7
oro(+[—)

Assuming rotation invariance, the polarlzatlon P becomes:

lo—o(—|—) + o—a(+]|-)]— [o—a(—|+) + o_a(+]+)]
PO = o I T oo (HO T [o—a(— ) T o—o(1 1)
rotation
loro(+|+) + o40(—|+)] — [o—0(—|F) + o—0(+|+)]
q — p—
PO = o) F oo (D] + [0 (=) + oo ¥
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Relation between polarization observables
In different frames



Polarized cross sections

It is useful to use the polarized cross sections, IDi, introduced by Bleszynski et al.

* spin-scalar . I Dg

1
1[1 + Dnn + Dgq + Dpp)

* spin-longitudinal (g-direction) : 1D, = 2[1 — Dpn + Dygq — Dpp}

1
+ spin-transverse (p-direction) : ID, = Z[l — Dy — Dggq + Dpyp)

1
_[1 + Dnn o qu o Dpp]

» spin-transverse (n-direction) : ID.,, 1

E.Bleszynski, M.Bleszynski, and J.C.A.Whitten, Phys .Rev. C 26, 2063 (1982).



C.M. and Lab. frames

Polarization observabels, D; and Dj;, are defined in C.M. frame [p,n,q].
- Experimentally, polarization observables Dj are measured in lab. frame.
S : Sideways

i NN | [S,N,L] : incident nucleon
Jj) € : Norma

L : Longitudinal [S’,N’,L’] : outgoing nucleon

Relation between C.M. [p,n,q] and lab. [S,N,L] frames is as follows:

>
L
(o]

® Oap :lab. scattering angle for X(a,b)Y
® Ocm. :C.m. scattering angle

o () : relativistic spin-rotation angle

* O : angle between ki and p-direction




C.M. and Lab. frames

Relation between polarization observables in C.M. and lab. frames becomes:

1 :

Dy = Z[l + Dnyy + (Dgrs + Dpp)cosay + (Dprs — Dgrp) sSinog |,
1 .

D, = Z[l + Dyy — (Dsrs + Dpp)cosay — (Dps — Dgrp) sinog |,
1 :

D, = Z[l — Dny + (Dsrs — Dyprp)cosap — (Dprs + Dgrp) sinag ],

1 .
Dp = 711 = Dyn — (Dg's = Dyp)cosay + (Dprs + Dsip) sinas],
where a1 = Biap+S2 and a2 = 26,-01ap-2.

In the elastic scattering (Dpq=-Dgp)and non-relativistic limit (Q2=0), relation becomes:

1
Dy = Z[l + DnN + (Ds's + Dp/p) €os O1ap + (Drrs — Dgrr) sin Q11
1
Dn = Z[l —I— DNN — (DS’S —I— DL’L) COS Hlab — (DL’S — DS’L) sin Hlab]
1 :
Dq = Z[l — DNN —I— (DS”S — DL’L) COS(29P — Hlab) — (DL’S —|— DS’L) sm(20p — Olab)]

1 .
D, = Z[l — DnN — (Ds's — D) cos(20, — 01ap) + (Dr's + Dg/1,) sin(20, — 1ap)]



Special case#1: Infinitely heavy target and Q=0

Relation in C.M. and lab. frames becomes:

Relation between polarization observables becomes:

1 2 2
IDg = [l = Dnn + Ds's — D] = E*X}

1 2 2
ID, = - [1 - Dnn — Ds's + D) = F2X3



Special case#2: nucleon-nucleon (NN) scattering

Relation in C.M. and lab. frames becomes:

Hlab — Up
Hc.m. — 2Hlab

oz = 20, — O1ap — 2 = O1ap

Relation between polarization observables becomes:

I
ID, Z[l — DnN + (Dgrs — D) sec 01ap)

1
IDp p— Z[l — DNN — (DS’S — DL’L) secHlab]

(Ds's — Dr/1,) cos 0o — (Dirrs + Dg/r) sin O1a, = (Ds's — Dy1) sec O1ap)
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Calibration of neutron polarimeters



Calibration of neutron polarimeter

In order to calibrate Ay.err Of a neutron polarimeter NPOL.:
» We need a neutron beam whose polarization is known.

* In general, the neutron beam is produced by a charge exchange (p,n) reaction at 0°

The neutron beam with a known known polarization can be produced as follows:
- proton polarization Pp, is known (i=S, N, L).
- Dii(0°) of the (p,n) reaction is known.

The neutron polarization P, can be deduced as

Pn,i = D3 (0°)ppi (2= S,N, L)

(p,n)
target
proton beam neutron beam
> >
Pp,S Dss(0°) pp,s
ﬁpai — pp,N ﬁnai — ‘DNN(OO) pp,N
Pp,L Dr1.(0°) pp.L




Calibration method #1

14C(p,n)1*N(0* ; 2.31 MeV)

* D;i(0°) = 1 for the O+ — 0* IAS transition

* Pn,i = D;;(0°) ppi = Pp,i (2= S,N, L)
* Neutron beam polarization = Proton beam polarization

— An ideal reaction to produce a polarized neutron beam

- Some disadvantages:
- 14C is a radioisotope (difficult to use as a target).
 |AS at Ex=2.31 MeV is weakly excited whereas GT 1* at 3.95 MeV is strongly excited.
« A good energy resolution of AE=500 keV is required.

1000 1 ———

z 1 GT Mot

ég 800 - (14 | E, = 200 MeV

o _ 6 = 0°

> B '

£ o : NPOL at IUCF was calibrated
S 400 — _ by this method.

S ' (1*, T=1) '

> wo | IAS [

200 | —2N(17, i
i || j

0 10 20 30
Excitation Energy (MeV) J.Rapaport and E.Sugarbaker, Ann. Rev. Nucl. Part. Sci. 44, 109 (1994).




Calibration method #2

’H(p,n)pp at 0° (GT 1* — 0%)
Under the charge symmetry:
2 / 2
D;;(0°) for “H(p,n) = D,.(0°) for “H(n, p)
- Double scattering measurement — D;i(0°) can be obtained

Example: 1 = L
“H(p, n) ‘H(n,p)

proton ,‘ neutron ,| proton |
Pp,L Pn,L = Drr (00) Pp,L P;,L — D};L (OO) Pn,L

. 2 o]
, T DLL (O ) pp,L
+ By measuring proton polarizations, Pp,z and P, 1 ,Drr, (0%) can be deduced.

0.0

| *H(p,n) ,
. e e —1— Dz (0°
-02F  Dyy(0°) P - DNN (OO) — 2LL( )

Pn,i = Dii(Oo)pp,i (7/ — Sa N? L)

— NPOL’s at LAMPF and RCNP were calibrated
by this method.

. | . | . | . | .
"300 400 500 800 700 800
Proton energy T, (MeV)



GT 12C(p,n)mNﬁ ) transition w/o knowing D;

For a spin-flip AS=1 GT transition, Dii(0°)’s satisry
2Dss(0°) + D (0°) = —1, (DN (0°) = Dggs(0°))

A

Prepare Pp beam with S and I, components.

Pp = (Pp,550,Pp,L)

- The L-component is measured as the S-component at BLP.
After (p,n) at 0°, neutron polarization p,, is:
Prn = (Pn,ssPn,N>Pn,.) = (Dss(0°) pp,r,0, Dr1.(0°) pp,1)
With a dipole field, Pn,L is rotated into Pn N
ﬁ;;, — (p;q,,sa p;z,Na P:q,,L)

= (Dss(0%) pp,s, DLr(0°) pp,r,0)

» rotation in the N-L plane.




GT "’C(p,n) °N(1") transition w/o knowing D;

Ppn = (Dss(0°) pp,s; DL(0°) pp,L, 0)

Left-Right and Up-Down asymmetries, ArLr & Aup, bypfn, N & an, g are measured:
. ALR — p:@,N Ay;eﬂ' — DLL(OO) Pp,L Ay;eﬂ'

’ AUD — p;q,,s Ay;eff — DSS(OO) Pp,s Ay;eff

Because 2Dss(0°)+DLL(0°)=-1, Ay:etf can be deduced as

A A
9 UD | LR _ 1
Pp,s Ay;eﬂ' Pp,L Ay;eﬂ'
A Arn
—> Ayjert = — [2 — - }
Pp,S Pp,L

 Ay.ef can be calibrated w/o knowing Dii(0°) beforehand.

Dii(0°) can be deduced as:

ALR Aup
D71, (0°) =

Dgss(0°) =
Pp,L Ay;eff Pp,S Ay;eff

NPOL3 at RCNP was calibrated by this method.
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Proton spin precession in magnetic fields



Proton spin precession in a magnetic field #1

In dipole, the relation between the proton momentum k and the magnetic field B is:
k1l B (B,L=kx B)
« Spin is precessed in the medium plane (in the bending plane).

- A relative spin precession angle 6 is given by

9:7<g?p—1)@

* gp = 5.586 : proton g-factor
+ O : bending angle

Y : Lorentz factor

Example (injection line from AVF to ring @ RCNP)
- 8=90° for Tp=60 MeV and ©=45°

« By bending ©=45°, the polarization vector is precessed by 90°. Therefore

A A A A

L — S S — L



Proton spin precession in a magnetic field #2

In solenoid, the relation between the proton momentum k and the magnetic field B is:
k| B (B|=k-B)
« Spin is precessed around k (perpendicular to the beam direction).

« Spin precession angle ¢ is given by

_, bn-ByL
® = gp B - he
gp — 9.586 : proton g-factor
pun = 3.15 X 107 MeV - T~ : nucleon magneton
B L in unit of Tm : magnetic field x length
3~y : Lorentz factors

Example (injection line from AVF to ring @ RCNP)
« $=90° for Tp=53 MeV and BL=0.600 Tm

» By passing in BL=0.6 Tm, the polarization vector is precessed by 90°. Therefore

A

L - Sor N



