# Effective interactions of 

## nuclei

## Naofumi Tsunoda

Center for Nuclear Study, the University of Tokyo

## CNSSS17

This work has been supported by MEXT and JICFuS as a priority issue (Elucidation of the fundamental laws and evolution of the universe) to be tackled by using Post "K" Computer.

## Construction of "Bridges"

Nuclear force
Light nuclei $\sim A \doteqdot$ 10-20

QCD


Lattice QCD
Effective Field Theory


Few body techniques No core shell model and many others...


via the effective interaction derived from nuclear force

## Purpose and scope of this lecture

- Understand effective interaction of nuclei
- Theory of "renormalization" of nuclear force
- Folded diagram method
- Current status of this line of research
- History of shell model calculation and effective interaction
- Various effective interactions for shell model
- What is effective interaction?
- Toy model
- Formal theories of effective interaction
- KK method
- Review of time-dependent perturbation theory
- Interaction picture
- Dyson equation
- Folded diagram method
- Factorization
- Implementation
- Extended Kuo-Krenciglowa method
- Recent application of MBPT
- Island of inversion
- Comparison to latest experiments
- Open problems


## Nuclear force in medium

realistic<br>nucleon-nucleon interaction

## effective

nucleon-nucleon interaction

- two-body interaction in vacuum
- "bare" NN interaction
- determined by scattering experiment
- Non-central nature
- Not applicable to
nuclear many-body problem directly
- two-body interaction in nuclear medium
- "renormalized" NN interaction
- designed for chosen degrees of freedom
- determined by shell model fitting or microscopic theory
- effective Non-central nature


## History of shell model and nuclear experiment

$10^{11 ~ 10^{23}}$


## Shell evolution

Single particle energies of neutron
Figure 3 from PRL 104, 012501 (2010)


Shell structure is changed drastically with the proton number
$\rightarrow$ key ingredient is effective nucleon-nucleon interaction

## Nuclear chart



## Early stage of effective interaction to nuclei

[1] T. T. S. Kuo and G. E. Brown, Nucl. Phys. A 114, 241 (1968).


Fig. 3. Energy levels of ${ }^{42} \mathrm{Ca}$ and ${ }^{42} \mathrm{Sc}$ calculated with $G$ and $G_{3 p 1 \mathrm{~h}}$. The experimental level schemes a from refs. ${ }^{13,14}$ ).

- G-matrix from Hamada-Jonston int.
- 2hw excitation
- 3p1h diagram included


## Early stage of effective interaction to nuclei

[1] H. M. Sommermann, et al., Physical Review C 23, 1765 (1981).


FIG. 6. Spectrum of ${ }^{18} \mathrm{O}(T=1)$. This spectrum was calculated with the inclusion of the folded diagrams as well as the contribution from $G_{3 \mathrm{plh}}^{T}$ with high momentum intermediate particle states.


- G-matrix from Hamada-Jonston int.
- 22 hw excitation
- 3p1h diagram included
- with folded diagrams


## G-matrix + MBPT + fit

[1] B. A. Brown et al., Annals of Physics 182, 191 (1988).





- Famous USD interaction
- Kuo-Brown interaction is modified (called renormalized G-matrix)


## MBPT for single major shell

[1] M. Hjorth-Jensen et al. , Phys. Rep. 261, 125 (1995).


Fig. 42. The low-lying spectra for ${ }^{18} \mathrm{O}$ with the Bonn C potential.

- G-matrix from Bonn A, B, C pot.
- many hw excitation
- 2nd, 3rd order and folded diagrams


## Multi-shell effective interactions

[1] Y. Utsuno et al., Phys. Rev.C C60, 054315 (1999).


FIG. 6. Yrast levels of Ne (top), Mg (center), and Si (bottom) isotopes. The filled (open) triangles, diamonds are the experimental (calculated) $2_{1}^{+}$and $4_{1}^{+}$levels, respectively. The crosses mean $E_{x}\left(2_{1}^{+}\right)$calculated by the $s d$-shell model.


FIG. 8. Average number of neutrons in the $p f$ shell subtracted by the corresponding number in the normal (i.e., filling) configuration. The triangles, diamonds, and circles stand for the values of Ne , Mg , and Si isotopes, respectively. The solid line denotes the corresponding value of Ne and Mg isotopes as predicted by the "island of inversion" of [11].

- sdpf-m int.
- island of inversion
- N=20 gap
- sd+pf shell


## Multi-shell effective interactions

[1] E. Caurier, et al., Phys. Rev. C 90, 014302 (2014).


FIG. 11. (Color online) Excitation energies of the first $2^{+}$states in the silicon isotopes (see caption of Fig. 6).


FIG. 12. (Color online) Comparison between experiment and theory for the most important low lying states in ${ }^{30} \mathrm{Mg},{ }^{32} \mathrm{Mg}$, and ${ }^{34} \mathrm{Si}$.

- sdpf-U-mix int.
- merging island of inversion and $\mathrm{N}=28$ gap
- sd+pf shell


## Multi-shell effective interactions

[1] E. Caurier, et al., Phys. Rev. C 90, 014302 (2014).


FIG. 11. (Color online) Excitation energies of the first $2^{+}$states in the silicon isotopes (see caption of Fig. 6).


FIG. 12. (Color online) Comparison between experiment and theory for the most important low lying states in ${ }^{30} \mathrm{Mg},{ }^{32} \mathrm{Mg}$, and ${ }^{34} \mathrm{Si}$.

- sdpf-U-mix int.
- merging island of inversion and $\mathrm{N}=28$ gap
- sd+pf shell


## Multi-shell effective interactions

[1] Y. Tsunoda et al., Phys. Rev. C 89, 031301 (2014).


FIG. 3. (Color online) Potential energy surfaces (PES) of Ni isotopes, coordinated by usual $Q_{0}$ and $Q_{2}$ (or $\gamma$ ). The energy relative to the minimum is shown by contour plots. Circles on the PES represent shapes of MCSM basis vectors (see the text).

- pf-g9/2-d5/2-shell
- Ni isotopes and shape transition
- Invention of T-plot


## Multi-shell effective interactions

[1] T. Togashi et al., Phys. Rev. Lett. 117, 172502 (2016).

(b) $0^{+}$levels


N

## Shell model effective interactions

- Attempt to obtain effective interactions for the shell model calculation first done by Kuo and Brown in 1968.
- There exists many effective interactions for shell model calculation
- Recent calculations mainly based on the effective interaction obtained by fit
- Fitting usually done on top of so-called G-matrix or MBPT.


## What is "effective" interaction



- Solve same physics for chosen degrees of freedom
- Same d eigen values and eigen vectors
- Typically low energy physics


## What is "effective" interaction?

$\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 5\end{array}\right) \quad 3 \times 3$ matrix
Eigenvalues and eigenvectors

$$
\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right)=\left(\begin{array}{c}
-1.08 \\
0.88 \\
5.19
\end{array}\right) \quad\left(\begin{array}{c}
0.92 \\
-1.00 \\
0.038
\end{array}\right)\left(\begin{array}{c}
-1.00 \\
-0.88 \\
0.20
\end{array}\right)\left(\begin{array}{c}
0.16 \\
0.22 \\
1.00
\end{array}\right)
$$

Suppose if we are interested in only lowest two states.
Projected matrix

$$
\text { P-space }\left\{\binom{1}{0},\binom{0}{1}\right\}
$$

$$
P V P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad\binom{e_{1}}{e_{2}}=\binom{-1.0}{1.0} \quad\binom{1.0}{-1.0}\binom{-1.0}{-1.0}
$$

Different eigenvalues and eigenenergies

## What is "effective" interaction?

Then, what is the interaction which yields the same eigenvalues and eigenvectors?

$$
\begin{gathered}
\left(\begin{array}{cc}
1.2 * 10^{-5} & 1-1.5 * 10^{-5} \\
1-0.48 * 10^{-1} & -0.19
\end{array}\right) \quad 2 \times 2 \text { matrix } \\
\binom{e_{1}}{e_{2}}=\binom{-1.08}{0.88} \quad\binom{0.92}{-1.00} \quad\binom{-1.00}{-0.88}
\end{gathered}
$$

Same eigenvalues and eigenvectors for lowest 2 states.
$\rightarrow$ different from PVP, but quite similar.
What was the point?

## Separation of the scale

Orignial matrix

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 5
\end{array}\right)
$$

Renormalized matrix

$$
\left(\begin{array}{cc}
1.2 * 10^{-5} & 1-1.5 * 10^{-5} \\
1-0.48 * 10^{-1} & -0.19
\end{array}\right)
$$

\(-\left($$
\begin{array}{l}e_{1} \\
e_{2} \\
e_{3}\end{array}
$$\right)=\left(\begin{array}{c}-1.08 <br>
0.08 <br>

-\overline{5} .19\end{array}\right)\)| P -space |
| :--- |
| $--\cdots-$ space |

- If the P-space are well separated from Q-space, renormalized matrix is not far from PVP
- Non hermiticity is not large


## Model space, P-space

Hamiltonian

$$
H=H_{0}+V, \quad H_{0}\left|\phi_{i}\right\rangle=E_{i}\left|\phi_{i}\right\rangle
$$

Projection operator

$$
\left[P, H_{0}\right]=\left[Q, H_{0}\right]=0 . \quad P^{2}=P, \quad Q^{2}=Q
$$



$$
P Q=Q P=0,
$$

$$
[P, Q]=0 .
$$



## Easy way to formulate

$$
\begin{aligned}
& \left(\begin{array}{ll}
P H P & P V Q \\
Q V P & Q H Q
\end{array}\right)\binom{\left|\phi_{\lambda}\right\rangle}{\left|\rho_{\lambda}\right\rangle}=E_{\lambda}\binom{\left|\phi_{\lambda}\right\rangle}{\left|\rho_{\lambda}\right\rangle}, \\
& \left|\rho_{\lambda}\right\rangle=\left(E_{\lambda}-Q H Q\right)^{-1} Q V P\left|\phi_{\lambda}\right\rangle \\
& \left|\phi_{\lambda}\right\rangle=\left(E_{\lambda}-P H P\right)^{-1} P V Q\left|\rho_{\lambda}\right\rangle . \\
& \left(P H P-\frac{1}{E_{\lambda}-Q H Q} Q V P\right)\left|\phi_{\lambda}\right\rangle=E_{\lambda}\left|\phi_{\lambda}\right\rangle \\
& \left(Q H Q-\frac{1}{E_{\lambda}-P H P} P V Q\right)\left|\rho_{\lambda}\right\rangle=E_{\lambda}\left|\rho_{\lambda}\right\rangle .
\end{aligned}
$$

Bloch-Horowitz Hamiltonian

$$
\begin{aligned}
& H_{\mathrm{BH}}(E)=P H P+P V Q \frac{1}{E-Q H Q} Q V P . \\
& H_{\mathrm{BH}}\left(E_{\lambda}\right)\left|\phi_{\lambda}\right\rangle=E_{\lambda}\left|\phi_{\lambda}\right\rangle, \quad \lambda=1, \cdots, D .
\end{aligned}
$$

$$
\left.\left|\Psi_{\lambda}\right\rangle=\left|\begin{array}{c}
C_{1} \\
\vdots \\
C_{D} \\
C_{D+1} \\
\vdots \\
\vdots \\
C_{N}
\end{array}\right|\right\}=\left|\phi_{\lambda}\right\rangle
$$

## Unsatisfactory because HBн $^{\text {depends on }}$ E.

## Energy independent Heff

What we want to know is energy independent Hamiltonian which satisfies

$$
H_{\mathrm{eff}}\left|\phi_{i}\right\rangle=E_{i}\left|\phi_{i}\right\rangle, \quad i=1, \cdots, d .
$$

IF we know true eigenstates and eigenenegies, we can formulate Heff immediately as follows,

$$
H_{\mathrm{eff}}=\sum_{i=1}^{d}\left|\phi_{i}\right\rangle E_{i}\left\langle\tilde{\phi}_{i}\right|, \quad\left\langle\tilde{\phi}_{i} \mid \phi_{j}\right\rangle=\delta_{i j}
$$

Bi-orthogonal basis is used because $\mid \phi>$ does not span whole P-space in general.
-> non Hermitian Heff (more later)

## How to find the Heff : decoupling equation

## Similarity transformation

$$
\mathcal{H}=e^{-\omega} H e^{\omega}, \quad Q \omega P=\omega
$$

Decoupling condition

$$
0=Q \mathcal{H} P=Q V P-\omega P H P+Q H Q \omega-\omega P V Q \omega,
$$


similarity
transformation


$$
\begin{aligned}
& H_{\mathrm{eff}}=P \mathcal{H} P \\
& V_{\mathrm{eff}}=P V P+P V Q \omega
\end{aligned}
$$

Next: Solve non-linear equation.

## Formal solution of decoupling equation (KK method)

Assumption: the model space is degenerate

$$
P H_{0} P=\epsilon_{0} P
$$

## Decoupling equation

$$
0=Q \mathcal{H} P=Q V P-\omega P H P+Q H Q \omega-\omega P V Q \omega,
$$

A solution for this equation

$$
\begin{aligned}
\left(\epsilon_{0}\right. & -Q H Q) \omega=Q V P-\omega P V P-\omega P V Q \omega . \\
\omega & =\frac{1}{\epsilon_{0}-Q H Q}(Q V P-\omega(P V P+P V Q \omega)) \\
& =\frac{1}{\epsilon_{0}-Q H Q}\left(Q V P-\omega V_{\mathrm{eff}}\right),
\end{aligned}
$$

Q-box:
$\hat{Q}(E)=P V P+P V Q \frac{1}{E-Q H Q} Q V P$,
Solve this by iteration
$\hat{Q}_{k}(E)=\frac{1}{k!} \frac{\mathrm{d}^{k} \hat{Q}(E)}{\mathrm{d} E^{k}}$.

$$
V_{\mathrm{eff}}^{(n)}=\hat{Q}\left(\epsilon_{0}\right)+\sum_{k=1}^{\infty} \hat{Q}_{k}\left(\epsilon_{0}\right)\left\{V_{\mathrm{eff}}^{(n-1)}\right\}^{k} .
$$

Iterative equation for deriving the Effective interaction for degenerate model space

## What is Q-box ?

$$
\begin{aligned}
& V_{\mathrm{eff}}^{(n)}=\hat{Q}\left(\epsilon_{0}\right)+\sum_{k=1}^{\infty} \hat{Q}_{k}\left(\epsilon_{0}\right)\left\{V_{\mathrm{eff}}^{(n-1)}\right\}^{k} \\
& \hat{Q}(E)=P V P+P V Q \frac{1}{E-Q H Q} Q V P,
\end{aligned}
$$

A state in P-space


A state in P-space


Something complicated happening in Q-space with energy E
Next: Then, what is the "complicated" stuff and its derivatives ??

## Conceptual drawing of Heff

Nuclear force in vacuum

in-medium correction


## Nuclear force

## Central force of AV8' potential



- Strong short range repulsion.
- High-momentum component.
- Can it be renormalized to low momentum int.?


## Vlowk interaction

Lippmann-Schwinger equation

$$
T\left(k^{\prime}, k ; k^{2}\right)=V_{N N}\left(k^{\prime}, k\right)+\frac{2}{\pi} \mathcal{P} \int_{0}^{\infty} \frac{V_{N N}\left(k^{\prime}, p\right) T\left(p, k ; k^{2}\right)}{k^{2}-p^{2}} p^{2} \mathrm{~d} p
$$

Low-momentum interaction $\mathrm{V}_{\text {lowk }}$ which preserves the HOS T-matrix

$$
T\left(k^{\prime}, k ; k^{2}\right)=V_{\text {lowk }}\left(k^{\prime}, k\right)+\frac{2}{\pi} \mathcal{P} \int_{0}^{\Lambda} \frac{V_{\text {lowk }}\left(k^{\prime}, p\right) T\left(p, k ; k^{2}\right)}{k^{2}-p^{2}} p^{2} \mathrm{~d} p .
$$

RG equation of $\mathrm{V}_{\text {lowk }}$ equation with respect to cutoff parameter $\Lambda$
$\longrightarrow \quad \frac{\mathrm{d} V_{\text {lowk }}\left(k^{\prime}, k\right)}{\mathrm{d} \Lambda}=\frac{2}{\pi} \frac{V_{\text {low } k}\left(k^{\prime}, \Lambda\right) T\left(\Lambda, k ; \Lambda^{2}\right)}{1-\left(k^{2} / \Lambda^{2}\right)}$.


- Decouple low-momentum and high-momentum part
- Preserve physical observable and low-momentum wave function
- Remove repulsive core


## Implementation of Vlowk interaction

Usu this equation instead of RG equation

$$
H_{\mathrm{eff}}=\sum_{i=1}^{d}\left|\phi_{i}\right\rangle E_{i}\left\langle\tilde{\phi}_{i}\right|, \quad\left\langle\tilde{\phi}_{i} \mid \phi_{j}\right\rangle=\delta_{i j}
$$

$$
V_{l o w k}=\sum_{k<k_{F}}\left|\phi_{k}\right\rangle E_{k}\left\langle\tilde{\phi}_{k}\right|-T
$$



## Non hermiticity

$$
\begin{aligned}
& V_{\mathrm{eff}}=P V P+P V Q \omega \\
& \left(P+\omega^{\dagger} \omega\right) H_{\mathrm{eff}}=H_{\mathrm{eff}}^{\dagger}\left(P+\omega^{\dagger} \omega\right)
\end{aligned}
$$

Cholesky decomposition: lower triangular matrix L

$$
\begin{aligned}
& P+\omega^{\dagger} \omega=L L^{\dagger} . \\
& L^{-1} H_{\mathrm{eff}}^{\dagger} L=L^{\dagger} H_{\mathrm{eff}}\left(L^{\dagger}\right)^{-1}=\left(L^{-1} H_{\mathrm{eff}}^{\dagger} L\right)^{\dagger} \\
& H_{\mathrm{eff}}^{\text {her }}=L^{\dagger} H_{\mathrm{eff}}\left(L^{\dagger}\right)^{-1} .
\end{aligned}
$$

If $\omega$ is enough small, $H^{\text {her }}{ }_{\text {eff }} \fallingdotseq H_{\text {eff }}$

## Day 2

## Many body problem

Hamiltonian in second quantized form

$$
\begin{aligned}
H & =H_{0}+V \\
& =\sum_{d} \epsilon_{\alpha} a_{\alpha}^{\dagger} a_{\alpha}+\frac{1}{2} \sum V_{\alpha \beta, \gamma \delta} a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}, \\
P & =\sum_{i}^{d}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| \\
\left|\phi_{i}\right\rangle & =\sum^{a} a_{\lambda}^{a} a_{\gamma}^{\dagger}|c\rangle .
\end{aligned}
$$

In Schrodinger picture

$$
H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle
$$

## Interaction picture

Interaction picture is suitable for perturbation theory

$$
\begin{aligned}
& H_{1}^{I}(t)=e^{-i H_{0} t} H_{1} e^{i H_{0} t} \\
& \left|\Psi^{I}(t)\right\rangle=e^{-i H_{0} t}\left|\Psi^{S}(t)\right\rangle \\
& \hat{O}^{I}(t)=e^{-i H_{0} t} \hat{O} e^{i H_{0} t}
\end{aligned}
$$

Heisenberg formula

$$
\frac{d}{d t} \hat{O^{I}}(t)=-i\left[H_{0}, O\right]
$$

Creation and annihilation operators

$$
\begin{aligned}
\frac{d}{d t} a_{i}^{+}(t) & =-i\left[\sum \epsilon_{\alpha} a_{\alpha}^{+} a_{\alpha}, a_{i}^{+}\right] \\
& =i \epsilon_{i} a_{i}^{+}
\end{aligned} \quad \begin{aligned}
a_{i}(t)=e^{-i \epsilon_{i} t} a_{i} \\
a_{i}^{\dagger}(t)=e^{i \epsilon_{i} t} a_{i}^{\dagger}
\end{aligned}
$$

## Dyson equation

Time-development of w.f. in interaction picture

$$
\begin{aligned}
& i \frac{d}{d t}|\Psi(t)\rangle=H_{1}(t)|\Psi(t)\rangle \\
& |\Psi(t)\rangle=\left|\Psi\left(t_{0}\right)\right\rangle+(-i) \int_{t_{0}}^{t} d t^{\prime} H_{1}(t)\left|\Psi\left(t^{\prime}\right)\right\rangle
\end{aligned}
$$

Defining time-development operator

$$
|\Psi(t)\rangle=U\left(t, t^{\prime}\right)\left|\Psi\left(t^{\prime}\right)\right\rangle
$$

Iterative solution: Dyson equation

$$
U\left(t, t^{\prime}\right)=\lim _{\epsilon \rightarrow 0} \lim _{t^{\prime} \rightarrow-\infty(1-i \epsilon)} \sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} \int_{t^{\prime}}^{t} \mathrm{~d} t_{1} \int_{t^{\prime}}^{t} \mathrm{~d} t_{2} \cdots \int_{t^{\prime}}^{t} \mathrm{~d} t_{n} T\left[H_{1}\left(t_{1}\right) H_{1}\left(t_{2}\right) \cdots H_{1}\left(t_{n}\right)\right] .
$$

## Diagrammatic expression

$$
U(0,-\infty) a_{a}^{+} a_{b}^{+}|c\rangle
$$



$$
\begin{aligned}
&=a_{e}^{+} a_{f}^{+}|c\rangle \times \lim _{t^{\prime} \rightarrow-\infty(1+i \epsilon)}(-i)^{2} \int_{t^{\prime}}^{0} d t_{1} \int_{t^{\prime}}^{t_{1}} d t_{2} \\
& e^{-i\left(\epsilon_{c}+\epsilon_{d}-\epsilon_{e}-\epsilon_{f}\right) t_{1}} \\
& e^{-i\left(\epsilon_{a}+\epsilon_{b}-\epsilon_{c}-\epsilon_{d}\right) t_{2}} \\
& \times V_{a b c d} V_{c d e f}
\end{aligned}
$$

$$
=a_{e}^{+} a_{f}^{+}|c\rangle \times \lim _{t^{\prime} \rightarrow-\infty(1+i \epsilon)}(-i) \int_{t^{\prime}}^{0} d t_{1} e^{-i\left(\epsilon_{c}+\epsilon_{d}-\epsilon_{e}-\epsilon_{f}\right) t_{1}}
$$

$$
\frac{e^{-i\left(\epsilon_{a}+\epsilon_{b}-\epsilon_{c}-\epsilon_{d}\right) t_{1}}}{-i\left(\epsilon_{a}+\epsilon_{b}-\epsilon_{c}-\epsilon_{d}\right)}
$$

$$
\times V_{a b c d} V_{c d e f}
$$

$$
=a_{e}^{+} a_{f}^{+}|c\rangle \times \frac{1}{\epsilon_{a}+\epsilon_{b}-\epsilon_{e}-\epsilon_{f}} \frac{1}{\epsilon_{a}+\epsilon_{b}-\epsilon_{c}-\epsilon_{d}} \times V_{a b c d} V_{c d e f}
$$

## Time-dependent perturbation theory

parent states

$$
\begin{array}{cc}
\left|\rho_{\lambda}\right\rangle & U(-\infty(1-i \varepsilon), 0) \\
\hline \infty(1-i \varepsilon) & \text { Time }
\end{array}
$$

true eigen states

$t=0$

Parent states: "projection" of true eigen states to P-space

$$
\left\langle\rho_{\lambda} \mid P \Psi_{\mu}\right\rangle=0 \quad(\lambda \neq \mu=1,2, \cdots, D) .
$$

-> Because of $\mathrm{i} \varepsilon$ term the lowest eigenstates survive.

$$
\frac{\left|\Psi_{\lambda}\right\rangle}{\left\langle\rho_{\lambda} \mid \Psi_{\lambda}\right\rangle}=\lim _{\epsilon \rightarrow 0} \lim _{t^{\prime} \rightarrow-\infty(1-i \epsilon)} \frac{U\left(0, t^{\prime}\right)\left|\rho_{\lambda}\right\rangle}{\left\langle\rho_{\lambda}\right| U\left(0, t^{\prime}\right)\left|\rho_{\lambda}\right\rangle} \longrightarrow H \frac{U(0,-\infty)\left|\rho_{\lambda}\right\rangle}{\left\langle\rho_{\lambda}\right| U(0,-\infty)\left|\rho_{\lambda}\right\rangle}=E_{\lambda} \frac{U(0,-\infty)\left|\rho_{\lambda}\right\rangle}{\left\langle\rho_{\lambda}\right| U(0,-\infty)\left|\rho_{\lambda}\right\rangle} .
$$

## Time-dependent perturbation theory

Of course we do not know true eigenstates $\mid \Psi>$ and therefore its projection $\mid \rho>$.

Being $\mid \psi>$ known P-space basis vectors, we can formally write down as

$$
\left|\rho_{\lambda}\right\rangle=\sum_{\alpha=1}^{d} C_{\alpha}^{(\lambda)}\left|\psi_{\alpha}\right\rangle
$$

Then we obtain,

$$
\sum_{\alpha=1}^{D} C_{\alpha}^{(\lambda)} H \frac{U(0,-\infty)\left|\psi_{\alpha}\right\rangle}{\left\langle\rho_{\lambda}\right| U(0,-\infty)\left|\rho_{\lambda}\right\rangle}=\sum_{\beta=1}^{D} C_{\beta}^{(\lambda)} E_{\lambda} \frac{U(0,-\infty)\left|\psi_{\beta}\right\rangle}{\left\langle\rho_{\lambda}\right| U(0,-\infty)\left|\rho_{\lambda}\right\rangle}
$$

$H U(0,-\infty) \fallingdotseq$ Heff

## What we know so far



Still different from Q-box, how come?

$$
|\phi\rangle \rightarrow \mathrm{Q}-\operatorname{box}(\mathrm{E}) \rightarrow\left|\phi^{\prime}\right\rangle
$$

## Factorization

## $U \mid \psi>$ can be factorized to several pieces

$$
\begin{array}{ll}
U(0,-\infty)\left|\psi_{\alpha}\right\rangle=U_{V}(0,-\infty) a_{i}^{\dagger} a_{j}^{\dagger}|c\rangle \times U(0,-\infty)|c\rangle, & \mathrm{V}: \text { Valence linked } \\
U(0,-\infty)|c\rangle=U_{Q}(0,-\infty)|c\rangle \times\langle c| U(0,-\infty)|c\rangle, & \text { Q: terminate as Q-space state } \\
\text { C: core state }
\end{array}
$$



## Factorization

$$
U_{V}(0,-\infty)\left|\psi_{\alpha}\right\rangle=\left|\chi_{P}\right\rangle+\left|\chi_{Q}\right\rangle .
$$

$P$ : terminate as $P$-space state
Q: terminate as Q-space state


## Folded diagrams

To factorize further, define folded diagrams as follows:


Then, we can factorize as follows,

$$
\begin{aligned}
& U_{V}(0,-\infty)\left|\psi_{\alpha}\right\rangle=\sum_{\beta=1}^{D} U_{V Q}(0,-\infty)\left|\psi_{\beta}\right\rangle\left\langle\psi_{\beta}\right| U_{V}(0,-\infty)\left|\psi_{\alpha}\right\rangle .
\end{aligned}
$$

## Finally Heff

Remember

$$
\sum_{\alpha=1}^{D} C_{\alpha}^{(\lambda)} H \frac{U(0,-\infty)\left|\psi_{\alpha}\right\rangle}{\left\langle\rho_{\lambda}\right| U(0,-\infty)\left|\rho_{\lambda}\right\rangle}=\sum_{\beta=1}^{D} C_{\beta}^{(\lambda)} E_{\lambda} \frac{U(0,-\infty)\left|\psi_{\beta}\right\rangle}{\left\langle\rho_{\lambda}\right| U(0,-\infty)\left|\rho_{\lambda}\right\rangle}
$$

Combining obtained knowledge,

$$
\begin{array}{r}
U(0,-\infty)\left|\psi_{\alpha}\right\rangle=U_{Q}(0,-\infty)|c\rangle\langle c| U(0,-\infty)|c\rangle \times \sum_{\beta=1}^{d} U_{V Q}(0,-\infty)\left|\psi_{\beta}\right\rangle\left\langle\psi_{\beta}\right| U_{V}(0,-\infty)\left|\psi_{\alpha}\right\rangle \\
\longrightarrow \sum_{\gamma=1}^{d} b_{\gamma}^{\lambda} H U_{Q}(0,-\infty)|c\rangle U_{V Q}(0,-\infty)\left|\psi_{\gamma}\right\rangle=\sum_{\delta=1}^{d} b_{\delta}^{\lambda} E_{\lambda} U_{Q}(0,-\infty)|c\rangle U_{V Q}(0,-\infty)\left|\psi_{\gamma}\right\rangle \\
b_{\gamma}^{(\lambda)}=\sum_{\alpha=1}^{d} C_{\alpha}^{(\lambda)} \frac{\left\langle\psi_{\gamma}\right| U_{V}(0,-\infty)\left|\psi_{\alpha}\right\rangle\langle c| U(0,-\infty)|c\rangle}{\left\langle\rho_{\lambda}\right| U(0,-\infty)\left|\rho_{\lambda}\right\rangle}
\end{array}
$$

Define linked pieces as follows,

$$
\begin{gathered}
U_{L}(0,-\infty)\left|\psi_{\alpha}\right\rangle \equiv U_{V Q}(0,-\infty)\left|\psi_{\alpha}\right\rangle U_{Q}(0,-\infty)|c\rangle, \\
\left.\longrightarrow \sum_{\gamma=1}^{d} b_{\gamma}^{(\lambda)}\left\langle\psi_{\sigma}\right| \cdot\left|H U_{L}(0,-\infty)\right| \psi_{\lambda}\right\rangle=E_{\lambda}\left|\psi_{\sigma}\right\rangle .
\end{gathered}
$$

## Factorization and folded diagram method

$$
\sum_{\gamma=1}^{d} b_{\gamma}^{(\lambda)}\left\langle\psi_{\sigma}\left\|H U_{L}(0,-\infty)\right\| \psi_{\lambda}\right\rangle=E_{\lambda}\left|\psi_{\sigma}\right\rangle .
$$

Extract contribution of the core

$$
P H_{\mathrm{eff}} P\left|\Psi_{\alpha}\right\rangle=\left(E_{\alpha}-E_{C}\right) P\left|\Psi_{\alpha}\right\rangle
$$

$$
H_{\mathrm{eff}}=\left\langle\psi_{\sigma}\right|\left(H_{0}(V)+H_{1}(V)\right) U_{L}(0,-\infty)\left|\psi_{\lambda}\right\rangle . \quad \mathrm{V} \text { : valence linked }
$$

valence linked


## core



## Heff

This is Q-box !

$$
\hat{Q}(E)=P V P+P V Q \frac{1}{E-Q H Q} Q V P
$$

## Folded diagrams and energy derivative

$$
\begin{aligned}
& =\frac{V_{\alpha \beta} V_{\beta \gamma} V_{\gamma \delta}}{\left(\epsilon_{\alpha}-\epsilon_{\gamma}-\left(\epsilon_{\alpha}-\epsilon_{\beta}\right)\right)\left(\epsilon_{\alpha}-\epsilon_{\gamma}\right)} \\
& =V_{\alpha \beta} V_{\beta \gamma} V_{\gamma \delta} \frac{\left(\left(\epsilon_{\alpha}-\epsilon_{\gamma}\right)-\left(\epsilon_{\alpha}-\epsilon_{\beta}\right)\right)^{-1}-\left(\epsilon_{\alpha}-\epsilon_{\gamma}\right)^{-1}}{\epsilon_{\alpha}-\epsilon_{\beta}} \\
& =\frac{\mathrm{d}}{\mathrm{~d} \omega}\left(\frac{V_{\beta \gamma} V_{\gamma \delta}}{\omega-\epsilon_{\gamma}}\right)_{\omega=\alpha} \times V_{\alpha \beta}
\end{aligned}
$$

Folded diagrams can be calculated by energy derivative if the
model space is degenerate

## Q-box expansion



Diagrams appearing in 2nd order

## Example of Q-box calculation



$$
=\sum_{p, h} \frac{V_{c h, a p} V_{p d, h b}}{\epsilon_{b}-\epsilon_{d}-\epsilon_{p}+\epsilon_{h}}
$$



$$
=\sum_{p_{1}, p_{2}} \frac{V_{c d, p_{1} p_{2}} V_{p_{1} p_{2}, a b}}{\epsilon_{a}+\epsilon_{b}-\epsilon_{p_{1}}-\epsilon_{p_{2}}}
$$

## EKK code algorithm



## Summary of folded diagram method

Bare nuclear interaction


Calculte Q-box



## EKK code algorithm

$$
\begin{aligned}
& \text { SPEs TBMEs }
\end{aligned}
$$

Time required
(single node)
read bare interaction from file $\sim 10 \mathrm{~s}$


$$
\tilde{H}_{\mathrm{eff}}^{(n)}=\tilde{H}_{\mathrm{BH}}(E)+\sum_{k=1}^{\infty} \hat{Q}_{k}(E)\left\{\tilde{H}_{\mathrm{eff}}^{(n-1)}\right\}^{k}
$$ iteration

## MPI+openMP scaling

Test case: sdpf-shell
13major shells oakforest (64 core, max 2048 nodes)


\# of nodes ~ \# of TBMEs
nice scaling

## Day 3

## Model space and shell model Hamiltonian

|  | Lower shell | Upper shell |  |
| :---: | :---: | :---: | :---: |
| Lower shell | Plenty of exp. data | Few exp. data | $\begin{aligned} & \text { USD int. } \\ & \text { gxpf1 } \\ & \text { KB3 } \end{aligned}$ |
| Upper shell | Few exp. data | Plenty of exp. data | - Cohen-Kurath <br> - sdpf-m <br> - sdpf-U-mix <br> etc... |

Cross-shell mtx: difficult to fit to exp. data

## EKK method


Nuclear Physics A 852 (2011) 61-81

Effective interaction in non-degenerate model space

## Kazuo Takayanagi

Department of Physics, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102, Japan
Received 12 November 2010; accepted 4 January 2011
Available online 8 January 2011

## EKK method in a schematic model

PHYSICAL REVIEW C 89, 024313 (2014
Multi-shell effective interactions
Naofumi Tsunoda
Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
Kazuo Takayanag
Department of Physics, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102, Japan
Morten Hjorth-Jensen
Department of Physics and Center of Mathematics for Applications, University of Oslo, N-0316 Oslo, Norway and National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

## Takaharu Otsuka

Department of Physics and Center for Nuclear Study, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan and National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
(Received 25 October 2013; published 24 February 2014)
Background: Effective interactions, either derived from microscopic theories or based on fitting selected properties of nuclei in specific mass regions, are widely used inputs to shell-model studies of nuclei. The commonly used unperturbed basis functions are given by the harmonic oscillator. Until recently, most shell-model calculations have been confined to a single oscillator shell like the $s d$ shell or the $p f$ shell. Recent interest in nuclei away from the stability line requires, however, larger shell-model spaces. Because the derivation of microscopic

EKK method in nuclei

## Divergent problem of Q-box in non-degenerate model space

(A)KK method requires assumption that the model space is degenerate
(B)Naive perturbation theory leads a divergence in non-degenerate model space

Example


$$
\frac{V_{a h, c p} V_{p b, h d}}{\left(\epsilon_{c}+\epsilon_{d}\right)-\epsilon_{c}-\epsilon_{p}+\epsilon_{h}-\epsilon_{b}}
$$

Energy denominator is zero when $\varepsilon_{\mathrm{d}}-\varepsilon_{\mathrm{b}}=\varepsilon_{\mathrm{p}}-\varepsilon_{\mathrm{h}}$

We need a theory which satisfies
(a)The assumption of degenerate model space is removed
(b)Avoid the divergence appearing in Q-box diagrams
$\rightarrow$ EKK method as a re-summation scheme of KK method

## Decoupling equation for the EKK method (formal solution)

Decoupling equation

$$
0=Q \mathcal{H} P=Q V P-\omega P H P+Q H Q \omega-\omega P V Q \omega
$$

Introduce energy parameter E

$$
\begin{aligned}
& (E)-Q H Q) \omega=Q V P-\omega P \tilde{H} P-\omega P V Q \omega, \\
& \tilde{H}=H-E
\end{aligned}
$$

EKK solution of parameter E

$$
\longrightarrow \quad \tilde{H}_{\mathrm{eff}}^{(n)}=\tilde{H}_{\mathrm{BH}}(E)+\sum_{k=1}^{\infty} \hat{Q}_{k}(E)\left\{\tilde{H}_{\mathrm{eff}}^{(n-1)}\right\}^{k}
$$

Points:

1. Arbitrary energy parameter $E$ is introduced $\rightarrow$ results do not depend on the choice of $E$
2. Veff is substituted by Heff
3. Q-box and its derivatives are not changed, but evaluated at E

## EKK method

$$
\begin{aligned}
& \text { New parameter E (arbitrary parameter) } \\
& H=H_{0}^{\prime}+V^{\prime} \\
& =\left(\begin{array}{cc}
E & 0 \\
0 & Q H_{0} Q
\end{array}\right)+\left(\begin{array}{cc}
P \tilde{H} P & P V Q \\
Q V P & Q V Q
\end{array}\right), \\
& H_{\mathrm{BH}}(E)=P H P+P V Q \frac{1}{E-Q H Q} Q V P \\
& \left.\tilde{H}_{\mathrm{eff}}^{(n)}=\tilde{H}_{\mathrm{BH}}(E)+\sum_{k=1}^{\infty} \hat{Q}_{k}(E) \tilde{H}_{\mathrm{eff}}^{(n-1)}\right\}^{k} . \\
& H=H_{0}+V \\
& =\left(\begin{array}{cc}
P H_{0} P & 0 \\
0 & Q H_{0} Q
\end{array}\right)+\left(\begin{array}{cc}
P V P & P V Q \\
Q V P & Q V Q
\end{array}\right) \\
& \hat{Q}(E)=P V P+P V Q \frac{1}{E-Q H Q} Q V P \\
& \left.V_{\mathrm{eff}}^{(n)}=\hat{Q}\left(\epsilon_{0}\right)+\sum_{k=1}^{\infty} \hat{Q}_{k}\left(\epsilon_{0}\right) V_{\mathrm{eff}}^{(n-1)}\right\}^{k} .
\end{aligned}
$$

- EKK method can be interpreted as a re-summation of KK method
- All the arguments are kept unchanged with the new division of the Hamiltonian
N. Tsunoda, K. Takayanagi, M. Hjorth-Jensen, and T. Otsuka, Phys. Rev. C 89, 024313 (2014).


## Example: EKK method avoids the divergences

EKK method


$$
\stackrel{V_{a h, c p} V_{p b, h d}}{\underset{E}{-}-\epsilon_{c}-\epsilon_{b}-\epsilon_{p}+\epsilon_{h}}
$$

KK method

$\frac{V_{a h, c p} V_{p b, h d}}{\left(\epsilon_{c}+\epsilon_{d}\right)-\epsilon_{c}-\epsilon_{p}+\epsilon_{h}-\epsilon_{b}}$

- We can choose E to avoid divergence!
- Note that the choice of E is arbitrary and should give the same result if the Q-box is calculated without any approximation.
- Inversely, E-dependence is a measure of error coming from the approximation


## Diagrams appearing in EKK method

| (i) | $\left\|\psi_{i}(t)\right\rangle$ |
| :--- | :--- |
| (ii) | $\left\{a_{a}^{\dagger} a_{p}^{\dagger}\|c\rangle\right\}(t)$ |
| (iii) | $\left\{a_{a}^{\dagger} a_{b}^{\dagger} a_{p}^{\dagger} a_{h}\|c\rangle\right\}(t)$ |


(i)

(ii)

(iii)

$$
\begin{aligned}
& =e^{-i E t}\left|\psi_{i}\right\rangle \\
& =e^{-i\left(\epsilon_{a}+\epsilon_{p}\right) t} a_{a}^{\dagger} a_{p}^{\dagger}|c\rangle \\
& =e^{-i\left(\epsilon_{a}+\epsilon_{b}+\epsilon_{p}-\epsilon_{h}\right) t} a_{a}^{\dagger} a_{b}^{\dagger} a_{p}^{\dagger} a_{h}|c\rangle
\end{aligned}
$$

P-space Q-space

Q-space

The argument of folded diagram is the same $\rightarrow$ derivatives indicate the folded diagram contribution

$$
\begin{aligned}
& =e^{-i H_{0}^{\prime} t}\left|\psi_{i}\right\rangle \\
& =e^{-i H_{0}^{\prime} t}\left\{a_{a}^{\dagger} a_{p}^{\dagger}|c\rangle\right\} \\
& =e^{-i H_{0}^{\prime} t}\left\{a_{a}^{\dagger} a_{b}^{\dagger} a_{p}^{\dagger} a_{h}|c\rangle\right\}
\end{aligned}
$$

$$
=\frac{V_{\alpha \beta} V_{\beta \gamma} V_{\gamma \delta}}{\left(\epsilon_{\alpha}-\epsilon_{\gamma}-\left(\epsilon_{\alpha}-\epsilon_{\beta}\right)\right)\left(\epsilon_{\alpha}-\epsilon_{\gamma}\right)}
$$

$$
=V_{\alpha \beta} V_{\beta \gamma} V_{\gamma \delta} \frac{\left(\left(\epsilon_{\alpha}-\epsilon_{\gamma}\right)-\left(\epsilon_{\alpha}-\epsilon_{\beta}\right)\right)^{-1}-\left(\epsilon_{\alpha}-\epsilon_{\gamma}\right)^{-1}}{\epsilon_{\alpha}-\epsilon_{\beta}}
$$

$$
=\frac{\mathrm{d}}{\mathrm{~d} \omega}\left(\frac{V_{\beta \gamma} V_{\gamma \delta}}{\omega-\epsilon_{\gamma}}\right)_{\omega=\alpha} \times V_{\alpha \beta}
$$

## Factorization theorem in EKK method

Factorization theorem does not hold in EKK method naively


## E-depdence w and w/o non-perturbative correction

$$
\tilde{H}_{\mathrm{eff}}^{(n)}=\tilde{H}_{\mathrm{BH}}(E)+\sum_{k=1}^{\infty} \hat{Q}_{k}(E)\left\{\tilde{H}_{\mathrm{eff}}^{(n-1)}\right\}^{k}
$$

optimum value pole of Q-box

$\star$ Non perturbative correction vanishes the E-dependecne $\star$ Optimum value of $E$

APPLICATION

## VMU ~ renormalization persistency

Renormalization persistency of tensor force
= tensor force survives renormalization treatment
tensor

central

N. Tsunoda et al., Phys. Rev. C 84, 044322 (2011).

## VMU ~ renormalization persistency

T. Otsuka et al., Phys. Rev. Lett. 104, 012501 (2010).
(a) central force :

Gaussian (strongly renormalized)


FIG. 2 (color online). Diagrams for the $V_{\mathrm{MU}}$ interaction.
$V_{c}=\sum_{S, T} f_{S, T} P_{S, T} \exp \left(-(r / \mu)^{2}\right)$,

- Central force -> modeled by gaussian
- Tensor force -> bare $\pi+\rho$ meson exchange
- widely used as effective int. for SM calc.


## Neutron-rich nuclei~ island of inversion



- $\mathrm{E}(2+) \sim 1 \mathrm{MeV}$ on $\mathrm{N}=20$ indicate breaking of major shell gap
- Unified treatment of beyond and below the N=20 gap is necessary
- And this is one of many examples...


# Exotic neutron-rich medium-mass nuclei with realistic nuclear forces 

Naofumi Tsunoda, ${ }^{1}$ Takaharu Otsuka, ${ }^{1,2,3,4}$ Noritaka Shimizu, ${ }^{1}$ Morten Hjorth-Jensen, ${ }^{5,6}$<br>Kazuo Takayanagi, ${ }^{7}$ and Toshio Suzuki ${ }^{8}$<br>${ }^{1}$ Center for Nuclear Study, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan<br>${ }^{2}$ Department of Physics and Center for Nuclear Study, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan<br>${ }^{3}$ National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA<br>${ }^{4}$ Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium<br>${ }^{5}$ National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy,<br>Michigan State University, East Lansing, Michigan, 48824, USA<br>${ }^{6}$ Department of Physics, University of Oslo, N-0316 Oslo, Norway<br>${ }^{7}$ Department of Physics, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102, Japan<br>${ }^{8}$ Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3, Setagaya-ku, Tokyo 156-8550, Japan<br>(Received 14 January 2016; revised manuscript received 23 January 2017; published 17 February 2017)

We present the first application of the newly developed extended Kuo-Krenciglowa (EKK) theory of the effective nucleon-nucleon interaction to shell-model studies of exotic nuclei, including those where conventional approaches with fitted interactions encounter difficulties. This EKK theory enables us to derive an interaction that is suitable for several major shells ( $s d+p f$ in this work). By using such an effective interaction obtained from the Entem-Machleidt QCD-based $\chi \mathrm{N}^{3} \mathrm{LO}$ interaction and the Fujita-Miyazawa three-body force, the energies, $E 2$ properties, and spectroscopic factors of low-lying states of neutron-rich $\mathrm{Ne}, \mathrm{Mg}$, and Si isotopes are nicely described, as the first shell-model description of the "island of inversion" without fit of the interaction. The long-standing question as to how particle-hole excitations occur across the $s d$ - $p f$ magic gap is clarified with distinct differences from the conventional approaches. The shell evolution is shown to appear similarly to earlier studies.

DOI: 10.1103/PhysRevC.95.021304

## 3N interaction ( $\Delta$-hole interaction)


summation with hole state

- Adding up effective 2N interaction derived from 3N interaction to EKK 2N effective interaction [1]
- This is one of the lowest order interaction from 3N force and for higher order we are working on...
[1] T. Otsuka, T. Suzuki, J. D. Holt, A. Schwenk, and Y. Akaishi, Phys. Rev. Lett. 105, 032501 (2010).


## 3N interaction (momentum space integration)

More modern and sophisticated choice of 3N


3N force from effective filed theory


Effective 2 N force from 3N force
$\rightarrow V_{\text {lowk }}+V_{3 N}$ as starting point of MBPT

## Monopole interactions



## Island of inversion



- Around Ne and Mg region $\mathrm{N}=20$ major gap disappears. (small $2+$ energy for even-even nuclei, large deformation, etc $\cdots$ )
- Ground state is consist of "inverse" configuration, i.e. intruder configuration
- Can microscopic theory describe this disappearance of major magic number?


## Ground state energies and dripline



- Contribution of 3N force is significant in neutron-rich nuclei
- Predictions of dripline
- Combination of Microscopic theory and Large scale calc.


## Shell structure in "island of inversion"



## Evolution of single particle states

Effective single particle energies at $\mathrm{N}=20$ isotones


3NF: general shift
Tensor force: drive sd to pf gap

## Wave function of Mg isotopes


"modest" and "abrupt" excitation modest: shifting between two shells (e.g. pairing) abrupt : strong deformation

Abrupt excitation roughly corresponds to conventional 2p2h excitation model

## Effective single particle energies

Neutron(N=20)


N=20 gap enhanced by tensor force

Proton(N=20)



Z=14 gap enhanced by 3N force

## Tensor force and 3 N force



Tensor force

- Enlarge the neutron $\mathbf{N}=\mathbf{2 0}$ gap $\pi \mathrm{d} 5 / 2-\nu \mathrm{f} 7 / 2(\mathrm{p} 3 / 2)=$ repulsive $\pi \mathrm{d} 5 / 2-\nu \mathrm{d} 3 / 2=$ attractive

Needed for doubly magic structure of Si34

## Three-body force

- Enlarge the proton $\underline{Z}=14$ gap
- Different physics, but needed for doubly magic structure of Si34 as well as tensor force


## 31 Mg


(a) EXP.
(b) $\mathrm{EKK}+3 \mathrm{~N}$
(c) sdpf-m (phenom.)
(d) sdpf-U-mix (phenom.)
(e) AMD+GCM

- onset of island of inversion
- ordering of levels reproduced
- positive=2hw dominanted
- negative=1 hw dominated

Deformation of 32Mg


## Summary and conclusion

- MBPT is the theory to construct the effective Hamiltonian starting from nuclear force.
- KK method or folded diagram method is introduced with formal theory and time-dependent perturbation theory
- EKK method is introduced to derive the effective interaction for the shell model which is applicable to multi-shell system.
- As an application of EKK method, the physics in the "island of inversion" is discussed in K-computer.
- EKK and 3N combination is the powerful tool to explore the wide area of the nuclear chart

