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Overview

§Lecture 1: Hamiltonian 
Prelude ● Many-Body Quantum Mechanics ● Nuclear Hamiltonian ● Matrix 
Elements 

§Lecture 2: Correlations 
Two-Body Problem ● Correlations & Unitary Transformations ● Similarity 
Renormalization Group  

§Lecture 3: Light Nuclei 
Many-Body Problem ● Configuration Interaction ● No-Core Shell Model ● 
Applications 

§Lecture 4: Beyond Light Nuclei 
Normal Ordering ● Coupled-Cluster Theory ● In-Medium Similarity 
Renormalization Group
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Two-Body Problem
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Solving the Two-Body Problem

§ simplest ab initio problem: the only two-nucleon bound state, the deuteron
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§ solve eigenvalue problem for intrinsic part (effective one-body problem)

§ start from Hamiltonian in two-body space, change to center of mass and 
intrinsic coordinates

§ separate two-body state into center of mass and intrinsic part
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Solving the Two-Body Problem

§ expand eigenstates in a relative partial-wave HO basis
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§ for given Jπ at most two sets of angular-spin-isospin quantum numbers 
contribute to the expansion

§ symmetries simplify the problem dramatically: 

• Hint does not connect/mix different J, M, S, T, MT  and parity π  

• angular mom. coupling only allows J=L+1, L, L-1 for S=1 or J=L for S=0 

• total antisymmetry requires L+S+T=odd
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Deuteron Problem

§ assume Jπ = 1+ for the deuteron ground state, then the basis expansion 
reduces to 

6

§ inserting into Schrödinger equation and multiplying with basis bra leads to 
matrix eigenvalue problem

§ truncate matrices to N ≤ Nmax and choose Nmax large enough so that 
observables are converged, i.e., do not depend on Nmax anymore

§ eigenvectors yield expansions coefficients and eigenvalues the energies
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Deuteron Solution

§ deuteron wave function show two characteristics that are signatures of 
correlations in the two-body system: 

• suppression at small distances due to short-range repulsion 

• L=2 admixture generated by tensor part of the NN interaction
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SRG Evolution in Two-Body Space

33

chiral NN
Entem & Machleidt. N3LO, 500 MeV

Jπ = 1+, T = 0
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SRG Evolution in Two-Body Space
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Argonne V18

Jπ = 1+, T = 0
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Correlations &  
Unitary Transformations
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Correlations

§many-body eigenstates of independent-particle models described by one-body 
Hamiltonians are Slater determinants 

§ thus, a single Slater determinant does not describe correlations 

§ but Slater determinants are a basis of the antisym. A-body Hilbert space, so any 
state can be expanded in Slater determinants 

§ to describe short-range correlations, a superposition of many Slater 
determinants is necessary 

9

correlations:  
everything beyond the independent 

particle picture
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Why Unitary Transformations ?

10

realistic nuclear interactions generate strong short-range 
correlations in many-body states

many-body methods rely on truncated Hilbert spaces  
not capable of describing these correlations

 Unitary Transformations

§ adapt Hamiltonian to truncated low-
energy model space 

§ improve convergence of many-body 
calculations 

§ preserve the physics of the initial 
Hamiltonian and all observables
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Unitary Transformations

§ unitary transformations conserve the spectrum of the Hamiltonian, with a 
unitary operator U we get
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H |�i = E |�i
U†HU U† |�i = E U† |�i

H̃ |�̃i = E |�̃i
with

§ for other observables defined via matrix elements of an operator A with the 
eigenstates we obtain

h�|A |�0i = h�|U U†AU U† |�0i = h�̃| Ã |�̃0i

unitary transformations conserve all  
observables as long as the Hamiltonian and all other 

 operators are transformed consistently

1 = U†U = UU†

H̃ = U†HU

|�̃i = U† |�i



Similarity Renormalization Group
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Similarity Renormalization Group

§ start with an explicit unitary transformation of the Hamiltonian with a 
unitary operator Uα  with continuous flow parameter α
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continuous unitary transformation to 
pre-diagonalize the Hamiltonian with respect  

to a given basis
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†H U�

§ differentiate both sides with respect to flow parameter
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Similarity Renormalization Group

§ define the antihermitian generator of the unitary transformation via
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§we thus obtain for the derivative of the transformed Hamiltonian

where the antihermiticity follows explicitly from differentiating the unitarity 
condition 1 = U�

†U�

d
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=
⇥
��,H�
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thus, that change of the Hamiltonian as function of the flow parameter is 
governed by the commutator of the generator with the Hamiltonian

§ this is the SRG flow equation, which has a close resemblance to the 
Heisenberg equation of motion 
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Glazek, Wilson, Wegner, Perry, Bogner, Furnstahl, Hergert, Roth,...

Similarity Renormalization Group

§ consistent unitary transformation of Hamiltonian and observables
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continuous unitary transformation to 
pre-diagonalize the Hamiltonian with respect  

to a given basis

H� = U�
†H U� O� = U�

†O U�

d

d�
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d
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d

d�
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§ the physics of the transformation is governed by the dynamic generator ηα 
and we choose an ansatz depending on the type of “pre-diaognalization” we 
want to achieve

§ flow equations for Hα and Uα  with continuous flow parameter α
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SRG Generator & Fixed Points

16

§ standard choice for antihermitian generator: commutator of intrinsic kinetic 
energy and the Hamiltonian

§ this generator vanishes if  

§ kinetic energy and Hamiltonian commute 

§ kinetic energy and Hamiltonian have a simultaneous eigenbasis 

§ the Hamiltonian is diagonal in the eigenbasis of the kinetic energy, i.e., in a 
momentum eigenbasis

§ a vanishing generator implies a trivial fixed point of the SRG flow equation — 
the r.h.s. of the flow equation vanishes and the Hamiltonian is stationary

§ SRG flow drives the Hamiltonian towards the fixed point, i.e., towards the 
diagonal in momentum representation

�� = (2�)2
⇥
Tint,H�
⇤
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Solving the SRG Flow Equation

§ convert operator equations into a basis representation to obtain coupled 
evolution equations for n-body matrix elements of the Hamiltonian

17

§ note: when using n-body matrix elements, components of the evolved 
Hamiltonian with particle-rank > n are discarded

|q (LS) JTi

§matrix-evolution equations for n=3 with antisym. three-body Jacobi HO states:
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i

n=2: two-body relative momentum

n=3: antisym. three-body Jacobi HO |E� J�Ti
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SRG Evolution in Two-Body SpaceSRG Evolution in Two-Body Space

Argonne V18

Jπ = 1+, T = 0
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SRG Evolution in Two-Body SpaceSRG Evolution in Two-Body Space

α = 0.320 fm4

Λ = 1.33 fm−1

Jπ = 1+, T = 0
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SRG Evolution in Two-Body SpaceSRG Evolution in Two-Body Space

chiral NN
Entem & Machleidt. N3LO, 500 MeV

Jπ = 1+, T = 0
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SRG Evolution in Two-Body SpaceSRG Evolution in Two-Body Space

α = 0.320 fm4

Λ = 1.33 fm−1

Jπ = 1+, T = 0
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SRG Evolution in Three-Body SpaceSRG Evolution in Three-Body Space

chiral NN+3N
N3LO + N2LO, triton-fit, 500 MeV
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SRG Evolution in Three-Body SpaceSRG Evolution in Three-Body Space
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SRG Evolution in A-Body Space

§ assume initial Hamiltonian and intrinsic kinetic energy are two-body operators 
written in second quantization

24

§ perform single evolution step       in Fock-space operator form

§ SRG evolution induces many-body contributions in the Hamiltonian

H0 =
X

...�†�†�� , Tint = T� Tcm =
X

...�†�†��

H�� = H0 + ��
⇥⇥
Tint,H0
⇤
,H0
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...�†�†��+ ��
X

...
⇥⇥
�†�†��,�†�†��

⇤
,�†�†��
⇤

=
X

...�†�†��+ ��
X

...�†�†�†�†����+ ��
X

...�†�†�†���+ ...

��

§ induced many-body contributions are the price to pay for the pre-diagonalization 
of the Hamiltonian
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SRG Evolution in A-Body Space 

§ decompose evolved Hamiltonian into irreducible n-body contributions Hα[n] 

§ truncation of cluster series formally destroys unitarity and invariance of 
energy eigenvalues (independence of α)  

§ flow-parameter variation provides diagnostic tool to assess neglected 
contributions of higher particle ranks

25

 SRG-Evolved Hamiltonians

NNonly : use initial NN, keep evolved NN

NN+3Nind : use initial NN, keep evolved NN+3N

NN+3Nfull : use initial NN+3N, keep evolved NN+3N

NN+3Nfull+4Nind : use initial NN+3N, keep evolved NN+3N+4N

H� = H[1]� +H[2]� +H[3]� +H[4]� + · · ·
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4He: Ground-State Energy4He: Ground-State Energies

5

Roth, et al; PRL 107, 072501 (2011)
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Roth, et al; PRL 107, 072501 (2011); PRL 109, 052501 (2012) 
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16O: Ground-State Energy16O: Ground-State Energies
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Roth, et al; PRL 107, 072501 (2011)
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Roth, et al; PRL 107, 072501 (2011); PRL 109, 052501 (2012) 

signature of induced 
4N interactions beyond 

mid p-shell


