Ab Initio Nuclear Structure Theory

Lecture 2: Correlations

Robert Roth

Overview

- Lecture 1: Hamiltonian

Prelude • Many-Body Quantum Mechanics • Nuclear Hamiltonian • Matrix Elements

- Lecture 2: Correlations

Two-Body Problem • Correlations \& Unitary Transformations • Similarity Renormalization Group

- Lecture 3: Light Nuclei

Many-Body Problem • Configuration Interaction • No-Core Shell Model • Applications

- Lecture 4: Beyond Light Nuclei

Normal Ordering • Coupled-Cluster Theory • In-Medium Similarity Renormalization Group

Two-Body Problem

Solving the Two-Body Problem

- simplest ab initio problem: the only two-nucleon bound state, the deuteron
- start from Hamiltonian in two-body space, change to center of mass and intrinsic coordinates

$$
\begin{aligned}
\mathrm{H}=\mathrm{H}_{\mathrm{cm}}+\mathrm{H}_{\text {int }} & =\mathrm{T}_{\mathrm{cm}}+\mathrm{T}_{\text {int }}+\mathrm{V}_{\mathrm{NN}} \\
& =\frac{1}{2 M} \overrightarrow{\mathrm{P}}_{\mathrm{cm}}^{2}+\frac{1}{2 \mu} \overrightarrow{\mathrm{q}}^{2}+\mathrm{V}_{\mathrm{NN}}
\end{aligned}
$$

- separate two-body state into center of mass and intrinsic part

$$
|\psi\rangle=\left|\Phi_{\mathrm{cm}}\right\rangle \otimes\left|\phi_{\mathrm{int}}\right\rangle
$$

- solve eigenvalue problem for intrinsic part (effective one-body problem)

$$
\mathrm{H}_{\mathrm{int}}\left|\phi_{\mathrm{int}}\right\rangle=E\left|\phi_{\mathrm{int}}\right\rangle
$$

Solving the Two-Body Problem

- expand eigenstates in a relative partial-wave HO basis

$$
\begin{gathered}
\left|\phi_{\mathrm{int}}\right\rangle=\sum_{N L S J M T M_{T}} C_{N L S J M T M_{T}}\left|N(L S) J M ; T M_{T}\right\rangle \\
\left|N(L S) J M ; T M_{T}\right\rangle=\sum_{M_{L} M_{S}} c\left(\left.\stackrel{M_{L}}{M_{L}} M_{S}\right|_{M} ^{\prime}\right)\left|N L M_{L}\right\rangle \otimes\left|S M_{S}\right\rangle \otimes\left|T M_{T}\right\rangle
\end{gathered}
$$

- symmetries simplify the problem dramatically:
- Hint does not connect/mix different J, M, S, T, M_{T} and parity п
- angular mom. coupling only allows $J=L+1, L, L-1$ for $S=1$ or $J=L$ for $S=0$
- total antisymmetry requires $L+S+T=$ odd
- for given J^{n} at most two sets of angular-spin-isospin quantum numbers contribute to the expansion

Deuteron Problem

- assume $J^{\Pi}=1^{+}$for the deuteron ground state, then the basis expansion reduces to

$$
\left|\phi_{\text {int }}, J^{\pi}=1^{+}\right\rangle=\sum_{N} C_{N}^{(0)}|N(01) 1 M ; 00\rangle+\sum_{N} C_{N}^{(2)}|N(21) 1 M ; 00\rangle
$$

■ inserting into Schrödinger equation and multiplying with basis bra leads to matrix eigenvalue problem

- truncate ses to $\mathbf{N} \leq \boldsymbol{N}_{\text {max }}$ and choose $N_{\max }$ large enough so that observables are converged, i.e., do not depend on $N_{\max }$ anymore

Deuteron Solution

Argonne V18

chiral NN

- deuteron wave function show two characteristics that are signatures of correlations in the two-body system:
- suppression at small distances due to short-range repulsion
- L=2 admixture generated by tensor part of the NN interaction

Correlations \&

Unitary Transformations

Correlations

correlations:
 everything beyond the independent particle picture

- many-body eigenstates of independent-particle models described by one-body Hamiltonians are Slater determinants
- thus, a single Slater determinant does not describe correlations
- but Slater determinants are a basis of the antisym. A-body Hilbert space, so any state can be expanded in Slater determinants
- to describe short-range correlations, a superposition of many Slater determinants is necessary

Why Unitary Transformations ?

realistic nuclear interactions generate strong short-range correlations in many-body states

Unitary Transformations

- adapt Hamiltonian to truncated lowenergy model space
- improve convergence of many-body calculations
- preserve the physics of the initial Hamiltonian and all observables
many-body methods rely on truncated Hilbert spaces not capable of describing these correlations

Unitary Transformations

- unitary transformations conserve the spectrum of the Hamiltonian, with a unitary operator U we get

$$
\begin{aligned}
& \mathrm{H}|\psi\rangle=E|\psi\rangle \\
& U^{\dagger} H U U^{\dagger}|\psi\rangle=E U^{\dagger}|\psi\rangle \quad \text { with } \quad \tilde{H}=U^{\dagger} H U \\
& \tilde{\mathrm{H}}|\tilde{\psi}\rangle=E|\tilde{\psi}\rangle \\
& 1=U^{\dagger} U=U U^{\dagger} \\
& |\tilde{\psi}\rangle=U^{\dagger}|\psi\rangle
\end{aligned}
$$

- for other observables defined via matrix elements of an operator A with the eigenstates we obtain

$$
\langle\psi| \mathrm{A}\left|\psi^{\prime}\right\rangle=\langle\psi| \cup \mathrm{U}^{\dagger} \mathrm{AU} \mathrm{U}^{\dagger}\left|\psi^{\prime}\right\rangle=\langle\tilde{\psi}| \tilde{\mathrm{A}}\left|\tilde{\psi}^{\prime}\right\rangle
$$

unitary transformations conserve all observables as long as the Hamiltonian and all other operators are transformed consistently

Similarity Renormalization Group

Similarity Renormalization Group

continuous unitary transformation to

 pre-diagonalize the Hamiltonian with respect to a given basis- start with an explicit unitary transformation of the Hamiltonian with a unitary operator U_{α} with continuous flow parameter α

$$
\mathrm{H}_{\alpha}=\mathrm{U}_{\alpha}^{\dagger} \mathrm{H} \mathrm{U}_{\alpha}
$$

- differentiate both sides with respect to flow parameter

$$
\begin{aligned}
\frac{d}{d \alpha} \mathrm{H}_{\alpha} & =\left(\frac{d}{d \alpha} \mathrm{U}_{\alpha}^{\dagger}\right) H \mathrm{U}_{\alpha}+\mathrm{U}_{\alpha}^{\dagger} \mathrm{H}\left(\frac{d}{d \alpha} \mathrm{U}_{\alpha}\right) \\
& =\left(\frac{d}{d \alpha} \mathrm{U}_{\alpha}^{\dagger}\right) \mathrm{U}_{\alpha} \mathrm{U}_{\alpha}^{\dagger} \mathrm{H} \mathrm{U}_{\alpha}+\mathrm{U}_{\alpha}^{\dagger} \mathrm{H} \mathrm{U}_{\alpha} \mathrm{U}_{\alpha}^{\dagger}\left(\frac{d}{d \alpha} \mathrm{U}_{\alpha}\right) \\
& =\left(\frac{d}{d \alpha} \mathrm{U}_{\alpha}^{\dagger}\right) \mathrm{U}_{\alpha} \mathrm{H}_{\alpha}+\mathrm{H}_{\alpha} \mathrm{U}_{\alpha}^{\dagger}\left(\frac{d}{d \alpha} \mathrm{U}_{\alpha}\right)
\end{aligned}
$$

Similarity Renormalization Group

- define the antihermitian generator of the unitary transformation via

$$
\eta_{\alpha}=-\mathrm{U}_{\alpha}^{\dagger}\left(\frac{d}{d \alpha} \mathrm{U}_{\alpha}\right)=\left(\frac{d}{d \alpha} \mathrm{U}_{\alpha}^{\dagger}\right) \mathrm{U}_{\alpha}=-\eta_{\alpha}^{\dagger}
$$

where the antihermiticity follows explicitly from differentiating the unitarity condition $1=\mathrm{U}_{\alpha}{ }^{\dagger} \mathrm{U}_{\alpha}$

- we thus obtain for the derivative of the transformed Hamiltonian

$$
\begin{aligned}
\frac{d}{d \alpha} \mathrm{H}_{\alpha} & =\eta_{\alpha} \mathrm{H}_{\alpha}-\mathrm{H}_{\alpha} \eta_{\alpha} \\
& =\left[\eta_{\alpha}, \mathrm{H}_{\alpha}\right]
\end{aligned}
$$

thus, that change of the Hamiltonian as function of the flow parameter is governed by the commutator of the generator with the Hamiltonian

- this is the SRG flow equation, which has a close resemblance to the Heisenberg equation of motion

Similarity Renormalization Group

continuous unitary transformation to

 pre-diagonalize the Hamiltonian with respect to a given basis- consistent unitary transformation of Hamiltonian and observables

$$
\mathrm{H}_{\alpha}=\mathrm{U}_{\alpha}^{\dagger} \mathrm{H} \mathrm{U}_{\alpha} \quad \mathrm{O}_{\alpha}=\mathrm{U}_{\alpha}^{\dagger} \mathrm{O} \mathrm{U}_{\alpha}
$$

- flow equations for H_{α} and U_{α} with continuous flow parameter α

$$
\frac{d}{d \alpha} \mathrm{H}_{\alpha}=\left[\eta_{\alpha}, \mathrm{H}_{\alpha}\right] \quad \frac{d}{d \alpha} \mathrm{O}_{\alpha}=\left[\eta_{\alpha}, \mathrm{O}_{\alpha}\right] \quad \frac{d}{d \alpha} \mathrm{U}_{\alpha}=-\mathrm{U}_{\alpha} \eta_{\alpha}
$$

- the physics of the transformation is governed by the dynamic generator η_{α} and we choose an ansatz depending on the type of "pre-diaognalization" we want to achieve

SRG Generator \& Fixed Points

- standard choice for antihermitian generator: commutator of intrinsic kinetic energy and the Hamiltonian

$$
\eta_{\alpha}=(2 \mu)^{2}\left[\mathrm{~T}_{\mathrm{int}}, \mathrm{H}_{\alpha}\right]
$$

- this generator vanishes if
- kinetic energy and Hamiltonian commute
- kinetic energy and Hamiltonian have a simultaneous eigenbasis
- the Hamiltonian is diagonal in the eigenbasis of the kinetic energy, i.e., in a momentum eigenbasis
- a vanishing generator implies a trivial fixed point of the SRG flow equation the r.h.s. of the flow equation vanishes and the Hamiltonian is stationary
- SRG flow drives the Hamiltonian towards the fixed point, i.e., towards the diagonal in momentum representation

Solving the SRG Flow Equation

- convert operator equations into a basis representation to obtain coupled evolution equations for \boldsymbol{n}-body matrix elements of the Hamiltonian

$$
\begin{array}{ll}
n=2: \text { two-body relative momentum } & |q(L S) J T\rangle \\
n=3: \text { antisym. three-body Jacobi HO } & \left|E i J^{\pi} T\right\rangle
\end{array}
$$

- matrix-evolution equations for $\mathrm{n}=3$ with antisym. three-body Jacobi HO states:

$$
\begin{aligned}
\left.\frac{\mathrm{d}}{\mathrm{~d} \alpha}\langle E i\rangle^{\pi} T \right\rvert\, & \mathrm{H}_{\alpha}\left|E^{\prime} i^{\prime} J^{\pi} T\right\rangle=(2 \mu)^{2} \sum_{E^{\prime \prime}, i^{\prime \prime}}^{E_{\text {SRG }}} \sum_{E^{\prime \prime \prime}, i^{\prime \prime \prime}}^{E_{\text {SRG }}}[\\
& \langle E i \ldots| \mathrm{T}_{\mathrm{int}}\left|E^{\prime \prime} i^{\prime \prime} \ldots\right\rangle\left\langle E^{\prime \prime} i^{\prime \prime} \ldots\right| \mathrm{H}_{\alpha}\left|E^{\prime \prime \prime} i^{\prime \prime \prime} \ldots\right\rangle\left\langle E^{\prime \prime \prime} i^{\prime \prime \prime} \ldots\right| \mathrm{H}_{\alpha}\left|E^{\prime} i^{\prime} \ldots\right\rangle \\
- & 2\langle E i \ldots| \mathrm{H}_{\alpha}\left|E^{\prime \prime} i^{\prime \prime} \ldots\right\rangle\left\langle E^{\prime \prime} i^{\prime \prime} \ldots\right| \mathrm{T}_{\text {int }}\left|E^{\prime \prime \prime} i^{\prime \prime \prime} \ldots\right\rangle\left\langle E^{\prime \prime \prime} i^{\prime \prime \prime} \ldots\right| \mathrm{H}_{\alpha}\left|E^{\prime} i^{\prime} \ldots\right\rangle \\
& \left.+\langle E i \ldots| \mathrm{H}_{\alpha}\left|E^{\prime \prime} i^{\prime \prime} \ldots\right\rangle\left\langle E^{\prime \prime} i^{\prime \prime} \ldots\right| \mathrm{H}_{\alpha}\left|E^{\prime \prime \prime} i^{\prime \prime \prime} \ldots\right\rangle\left\langle E^{\prime \prime \prime} i^{\prime \prime \prime} \ldots\right| \mathrm{T}_{\text {int }}\left|E^{\prime} i^{\prime} \ldots\right\rangle\right]
\end{aligned}
$$

■ note: when using n-body matrix elements, components of the evolved Hamiltonian with particle-rank $>n$ are discarded

SRG Evolution in Two-Body Space

momentum-space matrix elements

Argonne V18

$$
J^{\pi}=1^{+}, T=0
$$

SRG Evolution in Two-Body Space

$$
\alpha=0.320 \mathrm{fm}^{4}
$$

SRG Evolution in Two-Body Space

chiral NN

Entem \& Machleidt. N ${ }^{3}$ LO, 500 MeV

$$
J^{\pi}=1^{+}, T=0
$$

deuteron wave-function

SRG Evolution in Two-Body Space

$$
\begin{gathered}
\alpha=\underset{\wedge=1.33 \mathrm{fm}^{-1}}{0.320 \mathrm{fm}^{4}} \\
J^{\pi}=1^{+}, T=0
\end{gathered}
$$

deuteron wave-function

SRG Evolution in Three-Body Space

3B-Jacobi HO matrix elements

chiral NN+3N
$N^{3} \mathrm{LO}+\mathrm{N}^{2} \mathrm{LO}$, triton-fit, 500 MeV

$$
J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=28 \mathrm{MeV}
$$

NCSM ground state ${ }^{\mathbf{3}} \mathbf{H}$

SRG Evolution in Three-Body Space

3B-Jacobi HO matrix elements

$$
\alpha=\underset{\wedge=1.33 \mathrm{fm}^{-1}}{0.320 \mathrm{fm}^{4}}
$$

$$
J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=28 \mathrm{MeV}
$$

NCSM ground state ${ }^{\mathbf{3}} \mathrm{H}$

SRG Evolution in A-Body Space

- assume initial Hamiltonian and intrinsic kinetic energy are two-body operators written in second quantization

$$
\mathrm{H}_{0}=\sum \ldots \mathrm{a}^{\dagger} \mathrm{a}^{\dagger} a \mathrm{a}, \quad \mathrm{~T}_{\mathrm{int}}=\mathrm{T}-\mathrm{T}_{\mathrm{cm}}=\sum \ldots \mathrm{a}^{\dagger} \mathrm{a}^{\dagger} a \mathrm{a}
$$

- perform single evolution step $\Delta \alpha$ in Fock-space operator form

$$
\begin{aligned}
\mathrm{H}_{\Delta \alpha} & =\mathrm{H}_{0}+\Delta \alpha\left[\left[\mathrm{T}_{\mathrm{int}}, \mathrm{H}_{0}\right], \mathrm{H}_{0}\right] \\
& =\sum \ldots \mathrm{a}^{\dagger} \mathrm{a}^{\dagger} \mathrm{aa}+\Delta \alpha \sum \ldots\left[\left[\mathrm{a}^{\dagger} \mathrm{a}^{\dagger} a \alpha, \mathrm{a}^{\dagger} \mathrm{a}^{\dagger} a \alpha\right], \mathrm{a}^{\dagger} a^{\dagger} \mathrm{aa}\right] \\
& =\sum \ldots \mathrm{a}^{\dagger} \mathrm{a}^{\dagger} a \alpha+\Delta \alpha \sum \ldots \mathrm{a}^{\dagger} \mathrm{a}^{\dagger} \mathrm{a}^{\dagger} \mathrm{a}^{\dagger} a a \alpha a+\Delta \alpha \sum \ldots \mathrm{a}^{\dagger} \mathrm{a}^{\dagger} \mathrm{a}^{\dagger} a \alpha a+\ldots
\end{aligned}
$$

- SRG evolution induces many-body contributions in the Hamiltonian
- induced many-body contributions are the price to pay for the pre-diagonalization of the Hamiltonian

SRG Evolution in A-Body Space

- decompose evolved Hamiltonian into irreducible \boldsymbol{n}-body contributions $\mathbf{H}_{\alpha}{ }^{[n]}$

$$
\mathrm{H}_{\alpha}=\mathrm{H}_{\alpha}^{[1]}+\mathrm{H}_{\alpha}^{[2]}+\mathrm{H}_{\alpha}^{[3]}+\mathrm{H}_{\alpha}^{[4]}+\cdots
$$

- truncation of cluster series formally destroys unitarity and invariance of energy eigenvalues (independence of α)
- flow-parameter variation provides diagnostic tool to assess neglected contributions of higher particle ranks

SRG-Evolved Hamiltonians

> NNonly : use initial NN, keep evolved NN
> $\mathbf{N N}+\mathbf{3} \mathbf{N}_{\text {ind }}:$ use initial $N N$, keep evolved $N N+3 N$
> $\mathbf{N N}+\mathbf{3} \mathbf{N}_{\text {full }}$: use initial $N N+3 N$, keep evolved $N N+3 N$
> $\mathbf{N N}+\mathbf{3} \mathbf{N}_{\text {full }}+\mathbf{4} \mathbf{N}_{\text {ind }}$: use initial $N N+3 N$, keep evolved $N N+3 N+4 N$

${ }^{4}$ He: Ground-State Energy

16O: Ground-State Energy

