Ab Initio Nuclear Structure Theory

Lecture 3: Light Nuclei

Robert Roth

Overview

- Lecture 1: Hamiltonian

Prelude • Many-Body Quantum Mechanics • Nuclear Hamiltonian • Matrix Elements

- Lecture 2: Correlations

Two-Body Problem • Correlations \& Unitary Transformations • Similarity Renormalization Group

- Lecture 3: Light Nuclei

Many-Body Problem • Configuration Interaction • No-Core Shell Model • Applications

- Lecture 4: Beyond Light Nuclei

Normal Ordering • Coupled-Cluster Theory • In-Medium Similarity Renormalization Group

Many-Body Problem

Definition: Ab Initio

solve nuclear many-body problem based on realistic interactions using controlled and improvable truncations with quantified theoretical uncertainties

- numerical treatment with some truncations or approximations is inevitable for any nontrivial nuclear structure application
- challenges for $\mathbf{a b}$ initio calculations are to
- control the truncation effects
- quantify the resulting uncertainties
- reduce them to an acceptable level
- convergence with respect to truncations is important: demonstrate that observables become independent of truncations
- continuous transition from approximation to ab initio calculation...

Configuration Interaction Approaches

Configuration Interaction (CI)

- select a convenient single-particle basis

$$
|\alpha\rangle=\mid n\left\langle j m t m_{t}\right\rangle
$$

- construct A-body basis of Slater determinants from all possible combinations of A different single-particle states

$$
\left|\Phi_{i}\right\rangle=\left|\left\{\alpha_{1} \alpha_{2} \ldots \alpha_{A}\right\}_{i}\right\rangle
$$

- convert eigenvalue problem of the Hamiltonian into a matrix eigenvalue problem in the Slater determinant representation

$$
\begin{aligned}
& H_{\text {int }}\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle \\
& \quad\left|\Psi_{n}\right\rangle=\sum_{i} C_{i}^{(n)}\left|\Phi_{i}\right\rangle \\
& \left(\begin{array}{ccc}
\\
\ldots & \left\langle\Phi_{i}\right| H_{\text {int }}\left|\Phi_{i^{\prime}}\right\rangle & \ldots \\
\vdots
\end{array}\right)\left(\begin{array}{c}
\vdots \\
C_{i^{\prime}}^{(n)} \\
\vdots
\end{array}\right)=E_{n}\left(\begin{array}{c}
\vdots \\
C_{i}^{(n)} \\
\vdots
\end{array}\right)
\end{aligned}
$$

Model Space Truncations

- have to introduce truncations of the single/many-body basis to make the Hamilton matrix finite and numerically tractable
- full CI:
truncate the single-particle basis, e.g., at a maximum single-particle energy
- particle-hole truncated CI:
truncate single-particle basis and truncate the many-body basis at a maximum n-particle-n-hole excitation level
- interacting shell model:
truncate single-particle basis and freeze low-lying single-particle states (core)
- in order to qualify as ab initio one has to demonstrate convergence with respect to all those truncations
- there is freedom to optimize the single-particle basis, instead of HO states one can use single-particle states from a Hartree-Fock calculation

Variational Perspective

- solving the eigenvalue problem in a finite model space is equivalent to a variational calculation with a trial state

$$
\left|\Psi_{n}(D)\right\rangle=\sum_{i=1}^{D} C_{i}^{(n)}\left|\Phi_{i}\right\rangle
$$

- formally, the stationarity condition for the energy expectation value directly leads to the matrix eigenvalue problem in the truncated model space
- Ritz variational principle: the ground-state energy in a D-dimensional model space is an upper bound for the exact ground-state energy

$$
E_{0}(D) \geq E_{0}(\text { exact })
$$

■ Hylleraas-Undheim theorem: all states of the spectrum have a monotonously decreasing energy with increasing model space dimension

$$
E_{n}(D) \geq E_{n}(D+1)
$$

Theory Uncertainties

- model-space truncation is the sole source of uncertainties in the solution of the many-body problem
- absolute energies are protected by the variational principle, i.e., smooth and monotonic dependence on model-space size (not so for other observables)
convergence with respect to model-space size is the only thing we have to worry about
- efficient truncations: closer to convergence with smaller model-space dimension, i.e., physics-informed truncation scheme
- extrapolations: extrapolate observables to infinite model-space from sequence of finite-space calculations
- uncertainty quantification: extract many-body uncertainty from residual model-space dependence or extrapolation

No-Core Shell Model

No-Core Shell Model (NCSM)

- NCSM is a special case of a CI approach:
- single-particle basis is a spherical HO basis
- truncation in terms of the total number of HO excitation quanta $\boldsymbol{N}_{\text {max }}$ in the many-body states
- specific advantages of the NCSM:
- many-body energy truncation ($N_{\max }$) truncation is much more efficient than single-particle energy truncation ($e_{\max }$)
- equivalent NCSM formulation in relative Jacobi coordinates for each $N_{\max }$ - Jacobi-NCSM
- explicit separation of center of mass and intrinsic states possible for each $N_{\max }$

${ }^{4} \mathrm{He}: ~ N C S M ~ C o n v e r g e n c e ~$

- worst case scenario for NCSM convergence: Argonne V18 potential

$$
\alpha=0.00 \mathrm{fm}^{4}
$$

NCSM Basis Dimension

Computational Strategy

- key properties of the computational problem:
- only interested in a few low-lying eigenstates
- Hamilton matrix is very sparse (typically $<0.01 \%$ non-zeros)
- Laczos-type algorithms for an iterative solution of the eigenvalue problem
- amount of fast storage for non-zero matrix elements \& a few eigenvectors sets the limits and drives parallelization strategies

Lanczos Algorithm

■ Lanczos Algorithm: convert the eigenvalue problem of a huge matrix \boldsymbol{H} in an iterative process to an eigenvalue problem of small matrices $\boldsymbol{T}_{\boldsymbol{m}}$ which converge to the same extremal eigenvalues

Lanczos Algorithm

■ Lanczos Algorithm: convert the eigenvalue problem of a huge matrix \boldsymbol{H} in an iterative process to an eigenvalue problem of small matrices $\boldsymbol{T}_{\boldsymbol{m}}$ which converge to the same extremal eigenvalues

Importance Truncation

Importance Truncation

- converged NCSM calculations limited to lower \& mid p-shell nuclei
- example: full $N_{\max }=10$ calculation for ${ }^{16} \mathrm{O}$ would be very difficult, basis dimension $D>10^{10}$

Importance Truncation

- converged NCSM calculations limited to lower \& mid p-shell nuclei
- example: full $N_{\max }=10$ calculation for ${ }^{16} \mathrm{O}$ would be very difficult, basis dimension $D>10^{10}$

Importance Truncation

reduce model space to the relevant basis states using an a priori importance measure derived from MBPT

Importance Truncation

- starting point: approximation $\left|\Psi_{\text {ref }}\right\rangle$ for the target state within a limited reference space $\mathcal{M}_{\text {ref }}$

$$
\left|\Psi_{\text {ref }}\right\rangle=\sum_{\nu \in \mathcal{M}_{\text {ref }}} C_{\nu}^{(\text {ref })}\left|\Phi_{\nu}\right\rangle
$$

- measure the importance of individual basis state $\left|\Phi_{\nu}\right\rangle \notin \mathcal{M}_{\text {ref }}$ via first-order multiconfigurational perturbation theory

$$
\kappa_{\nu}=-\frac{\left\langle\Phi_{\nu}\right| \mathrm{H}\left|\Psi_{\text {ref }}\right\rangle}{\Delta \epsilon_{\nu}}
$$

- construct importance-truncated space $\mathcal{M}\left(\kappa_{\text {min }}\right)$ from all basis states with $\left|K_{\nu}\right| \geq K_{\text {min }}$
- solve eigenvalue problem in importance truncated space $\mathcal{M}_{\mathrm{IT}}\left(\kappa_{\text {min }}\right)$ and obtain improved approximation of target state

Threshold Extrapolation

- repeat calculations for a sequence of importance thresholds $K_{\text {min }}$

■ observables show smooth threshold dependence and systematically approach the full NCSM limit

■ use a posteriori extrapolation $K_{\text {min }} \rightarrow 0$ of observables to account for effect of excluded configurations

- uncertainty quantification via set of extrapolations

${ }^{4}$ He: Ground-State Energy

Li: Ground-State Energy

${ }^{12} \mathrm{C}$: Ground-State Energy

16O: Ground-State Energy

16O: Ground-State Energy

${ }^{12} \mathrm{C}$: Excitation Spectrum

From Dripline to Dripline

Ground States of Helium Isotopes

Ground States of Helium Isotopes

- chiral NN interaction cannot reproduce ground-state systematics

Ground States of Helium Isotopes

- chiral NN interaction cannot reproduce ground-state systematics
- inclusion of chiral 3N interaction improves trend significantly

Ground States of Helium Isotopes

- chiral NN interaction cannot reproduce ground-state systematics
- inclusion of chiral 3N interaction improves trend significantly
- systematics is sensitive to details of the $3 N$ interaction, test for new chiral Hamiltonians
- continuum needs to be included: NCSM with Continuum

Oxygen Isotopes

■ oxygen isotopic chain has received significant attention and documents the rapid progress over the past years

■ 2010: shell-model calculations with 3N effects highlighting the role of 3 N interaction for drip line physics

Hagen, Hjorth-Jensen, Jansen, Machleidt, Papenbrock, PRL 108, 242501 (2012)
■ 2012: coupled-cluster calculations with phenomenological two-body correction simulating chiral 3 N forces

Hergert, Binder, Calci, Langhammer, Roth, PRL 110, 242501 (2013)
■ 2013: ab initio IT-NCSM with explicit chiral 3N interactions and first multi-reference in-medium SRG calculations...

Cipollone, Barbieri, Navrátil, PRL 111, 062501 (2013)
Bogner, Hergert, Holt, Schwenk, Binder, Calci, Langhammer, Roth, PRL 113, 142501 (2014)
Jansen, Engel, Hagen, Navratil, Signoracci, PRL 113, 142502 (2014)
■ since: self-consistent Green's function, shell model with valencespace interactions from in-medium SRG or Lee-Suzuki,...

Ground States of Oxygen Isotopes

Ground States of Oxygen Isotopes

Spectra of Oxygen Isotopes

${ }^{12} \mathrm{C}$: Testing Chiral Hamiltonians

${ }^{12} \mathrm{C}$: Testing Chiral Hamiltonians

The NCSM Family

- NCSM

HO Slater determinant basis with $N_{\text {max }}$ truncation

- Jacobi NCSM
relative-coordinate Jacobi HO basis with $N_{\text {max }}$ truncation
- Importance Truncated NCSM

HO Slater determinant basis with $N_{\text {max }}$ and importance truncation

- Monte Carlo NCSM

Monte Carlo sampling to select important basis states

- Symmetry Adapted NCSM
group-theoretical basis with $\operatorname{SU}(3)$ deformation quantum numbers \& truncations
- Gamow NCSM/CI

Slater determinant basis including Gamow single-particle resonance states

- NCSM with Continuum

NCSM for sub-clusters with explicit RGM treatment of relative motion

