
Identification and Significance Assessment of
Compact Object Merger Candidates

Kipp Cannon

Presented at CNSSS19, University of Tokyo, Hongo, August 22, 2019



Compact Object Mergers

I Orbiting bodies lose energy to
gravitational radiation.

I For most of the system’s
evolution the radiated wave has
simple, easily modelled,
structure.

I For compact objects (black
holes, neutron stars), orbital
speeds get close to c .

I Near merger, size and
deformability of objects
becomes significant, dynamics
of spacetime, too.

Credit: K. Thorne (Caltech) /

T. Carnahan (NASA GSFC)



I Prototypical compact object merger waveform. Vertical axis is
strain, horizontal axis is time, scales are irrelevant.

I If 1.4+1.4 BNS merger: horizontal axis spans about 0.02 s, left edge
corresponds to about 400 Hz.
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I Question: do these data contain one or more compact object merger
signals?



Plan

Question: do these data contain one or more compact object merger
signals?

I Neyman-Pearson criterion and “optimal” detection statistics.

I Mathematical description of random fields.

I Karhunen-Loève theorem and likelihood ratios for correlated
variables.

I The matched filter.

I The real world.
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Neyman-Pearson Criterion

I Criterion defines meaning of “optimal” detector.

I When performing a hypothesis test between two point hypotheses,
choose the descriminant that maximizes the detection efficiency
given a fixed false-alarm probability.

I Neyman-Pearson Lemma: the likelihood-ratio test satisfies the
Neyman-Pearson Criterion.

I The “likelihood ratio” is

Λ(θ) =
P(θ|signal)

P(θ|no signal)
(1)

where θ are your data.

I Computing Λ and applying a threshold is the most efficient detector
of “signals” at first false-alarm rate.



Neyman-Pearson Criterion: Example

I Example: “Some coins in a batch favour heads over tails by 20%,
that is, P(head) = 0.6, while all other coins are fair. You wish to
identify biased coins by flipping each coin 3 times. Write a statistic
to identify biased coins with the greatest detection efficiency for
some choice of false-alarm probability using the outcome of three
tosses.”



Neyman-Pearson Criterion: Example’s Solution
I Consider 3 tosses to yield outcomes x1, x2, x3 (e.g., x1 = head,

x2 = head, x3 = tail).

I Probability that fair coin produces exactly this result:

P(x1, x2, x3|not biased) = 0.53 = 1/8. (2)

I Probability that biased coin produces this result:

P(x1, x2, x3|biased) =

{
.4 if x1 tail

.6 if x1 head

}{
.4 if x2 tail

.6 if x2 head

}{
.4 if x3 tail

.6 if x3 head

}
(3)

I Discriminating statistic:

Λ(x1, x2, x3) =
P(x1, x2, x3|biased)

P(x1, x2, x3|not biased)
= 8P(x1, x2, x3|biased). (4)

I Coin is put into “biased” pile if Λ ≥ Λ0, where Λ0 is some threshold.



Neyman-Pearson Criterion: Example’s Solution

I Sometimes a fair coin is classified as biased (false alarm), and
sometimes a biased coin classified as fair (false dismissal, efficiency
< 1). Each choice of Λ0 leads to a different false-alarm probability, a
different efficiency.

I Λ does not tell you the probability that a coin is biased, it tells you
what pile to put it in given the rate at which you are prepared to
contaminate the pile with incorrectly labelled fair coins.

I 8P(x1, x2, x3|biased) is the likelihood ratio so we know it satisfies the
Neyman-Pearson criterion, but obviously so would
P(x1, x2, x3|biased) (without the factor or 8).

I Any function that is monotonic in Λ also satisfies the N.-P. criterion,
and is equivalent in its suitability for use as a ranking statistic.

I Typically ln Λ is used as the ranking statistic because it’s often more
convenient to work with the logarithms of probabilities.



Time Series

I A time series is a vector. Properties of a vector space:
I have two operations: “addition” and “scalar multiplication”
I addition is commutative and associative ~x + ~y = ~y + ~x ,

(~x + ~y) + ~z = ~x + (~y + ~z).
I there exists an element “0” that is the additive identity ~x + 0 = ~x .
I for each element there exists an additive inverse element, −~x .
I scalar and field multiplication are compatible (ab)~x = a(b~x).
I scalar multiplication distributes over field addition a(~x +~y) = a~x + a~y
I scalar multiplication distributes over scalar addition

(a + b)~x = a~x + b~x .

I It is (I think) self-evident that real- and complex-valued functions of
time possess all of these properties.



Inner Product Space

I An inner product space is a vector space that possesses one
additional property: an “inner product”.

I An inner product associates each pair of vectors with a scalar and
has the following properties:
I conjugate symmetry: 〈~x , ~y〉 = 〈~y , ~x〉.
I linear in first argument: 〈a~x , ~y〉 = a 〈~x , ~y〉,
〈~x + ~y ,~z〉 = 〈~x ,~z〉+ 〈~y ,~z〉.

I positive definite: 〈~x , ~x〉 ≥ 0, 〈~x , ~x〉 = 0 iff ~x = 0.

I The inner product of a vector with itself can be used to give the
space a norm.



Inner Product Space

I It’s maybe less obvious, but functions of time possess an inner
product as well, for example,

〈f (t), g(t)〉 =

∫
f (t)g∗(t)dt, (5)



Vector Spaces, Inner Product Spaces: WHO CARES?

I Because, silly, now everything you know about vectors and geometry
is true about functions as well:
I a function, like a vector, can be tought of as a point in a space (the

point at the end of the vector if placed at the origin);
I continuous families of functions are surfaces and volumes in that

space;
I you can compute the “distance” between two functions;
I you can “project” a function onto a family of functions’

hypersurface, thereby decomposing it into a component in that
family of functions and a component orthogonal to that family.

I You can formulate answers to questions like “Does this function of
time contain a component that belongs to some given family of
functions?”

I Do my data contain a binary black hole merger?



The Fourier Transform

xj =
1

N

N−1∑
k=0

x̃k exp[2πijk/N] (6)

x̃k =
N−1∑
j=0

xj exp[−2πijk/N] (7)

I A linear operator. Example: two-sample time series[
x̃0
x̃1

]
=

[
1 1
1 −1

] [
x0
x1

]
(8)

I Rows of matrix are orthogonal to each other, and there are as many
of them as there are dimensions, so they form a complete orthogonal
basis.

I Therefore (if suitably normalized) the transformation is unitary, so it
preserves inner product.



The Fourier Transform

I Inner-product preserving = norm preserving, “Parseval’s theorem”.

I Inner-product preserving = angle preserving. (~a ·~b = |~a|
∣∣∣~b∣∣∣ cos θ).

I If all angles between vectors are preserved, the Fourier transform
must be (something like) a rotation — it’s a “generalized rotation”.



(Gaussian) Random Fields

I An n-dimensional random field, f (~r), is a set of random variables,
one for each point ~r .

I The field and all of its statistical properties are entirely defined by
the set of finite dimensional joint probability distribution functions,

P [f (~r1), . . . , f (~rm)] df (~r1) · · · df (~rm), (9)

giving the probability that for the given ~ri , i = 1, . . . ,m, the field f
simultaneously takes on values at the points ~ri in the ranges f (~ri ) to
f (~ri ) + df (~ri ).

I A Gaussian random field is one for which all the m-point probability
distributions are Gaussian in the f (~ri ).



(Gaussian) Random Fields

I A Gaussian m-point joint probability distribution for the random
variables fi is given by

P(f1, . . . , fm)df1 · · · dfm =
1√

2π
m√

detB
exp

[
−1

2
∆~f TB−1∆~f

]
df1 · · · dfm

(10a)
where B is the covariance matrix of the fi ,

Bij ≡ 〈∆fi∆fj〉 , (10b)

and ∆~f is the column vector of residuals

∆fi ≡ fi − 〈fi 〉 . (10c)

I Note that for Gaussian random variables, any m-point joint
distribution requires only the means and two-point covariance.

I Sometimes you will see the notiation 〈〈fi fj〉〉 ≡ 〈∆fi∆fj〉.



(Gaussian) Random Fields
I For a random field, f (~r), with continuous co-ordinates the

covariance matrix generalizes to the two-point covariance function,

B(~ri ,~rj) = 〈〈f (~ri )f (~rj)〉〉 , (11)

and, as above, this contains all the information required to construct
any m-point joint distribution for the field.

I A strictly homogeneous random field is one for which all
finite-dimensional joint probability distributions, (9), are left
unchanged by a co-ordinate translation. This implies that the joint
distribution functions depend on the co-ordinate separations,
rij = rj − ri , called the lag factors, alone; and that the mean, 〈f (r)〉,
and mean square,

〈
f 2(r)

〉
, are independent of r .

I In this case, the two-point covariance function can be translated to
the origin without loss of generality,

Bij = B(ri , rj) = 〈〈f (ri )f (rj)〉〉 = 〈〈f (0)f (rj − ri )〉〉 = 〈〈f (0)f (r)〉〉 = B(r),
(12)

thereby becoming a function of a single co-ordinate.



(Gaussian) Random Fields

I If the mean, in addition to being independent of r , is also 0 then the
covariance function reduces to

B(r) = 〈〈f (0)f (r)〉〉 = 〈f (0)f (r)〉 . (13)

In this case, this function is also sometimes denoted as
ξ(0, r) = ξ(r), the (two-point) correlation function.

I A random field is isotropic if the joint probability distribution
functions are left unchanged by rotations. For a homogeneous
random field, isotropy means the distribution functions depend only
on the magnitudes of the lag factors, |~rij | = |~rj −~ri |, not their
direction.

I Finally, a random field is called ergodic if a single realization of the
field contains sufficient information to completely determine all the
joint probability distribution functions: ensemble averages and
co-ordinate averages are interchangable.



(Gaussian) Random Fields

I It is important to understand that when dealing with random fields
one is always discussing the properties of the statistics of the field.
This contrasts with classical fields where one characterizes them by
the properties of their values. For this reason, the meaning of
homogeneous and isotropic when used in the context of a random
field is not the same as when those same words are used in the
context of classical fields. In particular, a homogeneous classical
scalar field is necessarily “isotropic” since a field that is the same
everywhere is left unchanged by a rotation. A homogeneous random
scalar field, however, can be “anisotropic” as long as the direction
dependence of its statistical properties is the same everywhere.



(Gaussian) Random Fields

I The n-dimensional Fourier transform of the field is defined as usual

I The integral(sum) is imagined to be evaluated once for each
member of the ensemble of field realizations; each evaluation yields
a realization of the Fourier transform, that taken together define the
ensemble of realizations and from that one can determine the
statistical properties of the transform.

I One very important quantity is the two-point spectral correlation
function〈

f̃k f̃
∗
k′

〉
=

1

(2π)n

〈∫
f (r1)e−ik · r1 f (r2)e+ik′ · r2 dr1 dr2

〉
(14)

I For stationary fields
〈
f̃k f̃
∗
k′

〉
∝ δ(k − k ′) in the continuous case, or〈

f̃k f̃
∗
k′

〉
∝ δkk′ for discrete fields.

I The proportionality constant is the “spectral density function” Sk .



(Gaussian) Random Fields



(Gaussian) Random Fields

I For stationary, one-dimensional, zero-mean Gaussian random field
f (t), spectral density function is Fourier transform of two-point
correlation function

Sk =
〈∣∣f~k ∣∣2〉 =

∫
ξ(t)e−ikt dt (15)

I Deriving this is tricky, and for continuous fields the units of the LHS
are not what you expect; for discrete fields (sampled time series
data) the units of the LHS are what you expect.



Karhunen-Loève Theorem

I Given a zero-mean square integrable stochastic process n(ti ) defined
on an interval [a, b] with covariance matrix Bij = 〈f (ti )f (tj)〉,
ti , tj ∈ [a, b], projecting n(ti ) onto the eigenspace of the covariance
matrix yields a stochastic process n′(ti ) whose covariance matrix is
diagonal.



Karhunen-Loève Theorem: Example
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I Consider coloured zero-mean stationary Gaussian noise n(t) with
covariance matrix Bij = 〈n(ti )n(tj)〉; a signal s(ti ) might or might
not be present in the noise, construct a statistic to test for its
presence that possesses the highest detection efficiency given a
choice of false-alarm probability. Assume the noise is additive, that
is with no signal present the data are given by x(ti ) = n(ti ), with
the signal present the data are given by x(ti ) = n(ti ) + s(ti ).



Karhunen-Loève Theorem: Examle’s Solution

I By N.-P. Lemma we know the likelihood ratio, Λ(~x) = P(~x|signal)
P(~x|no signal) ,

will suffice as the detection statistic.

I Need to calculate P(~x |signal) and P(~x |no signal).

I In principle this is simple, however, recalling m-point joint
distribution for the xi , we remember that we need to compute B−1,
which quickly becomes impractical: e.g., neutron star merger
waveform spends 30 minutes in-band in LIGO, at 16384
samples/second B is 30 million samples square that needs to be
inverted. This is possible with present day computers, but you can
probably count on one hand the number of computers in the world
able to perform this calculation.



Karhunen-Loève Theorem: Examle’s Solution

I K.-L. theorem tells us there exist functions Φk(ti ) that are solutions
to ∑

j

BijΦk(tj)∆t = λkΦk(ti ) (16)

that form an orthonormal basis, and that when projected onto that
basis the components of n(ti ) are independent random variables.

I Because the noise is stationary, Bij = B(ti − tj), it is a circulant
matrix. One can show that the eigenvectors, Φk(ti ), of a circulant
matrix are Fourier modes with eigenvalues (in this case)

λk =
〈
|ñk |2

〉
= Sk , the spectral density function.



Karhunen-Loève Theorem: Examle’s Solution

I Fourier transforming the noise turns it into a set of independent
Gaussian random variables, so we can immediately write

P(~x |signal) =
∏
k

1√
2πSk

exp− (x̃k − s̃k)2

2Sk
(17)

P(~x |no signal) =
∏
k

1√
2πSk

exp− x̃2k
2Sk

(18)

I It’s convenient to work with the log of the likelihood ratio, ln Λ,
which is

ln Λ =
∑
k

2s̃k x̃k − s̃2k
2Sk

(19)

I Therefore, thresholding on F =
∑

k
x̃k s̃k
Sk

satisfies the
Neyman-Pearson criterion.



Geometric Interpretation

F =
∑
k

x̃k s̃k
Sk

(20)

I We perform a rotation-like transformation (F.T.) into a co-ordinate
system where the principal axes of the noise distribution are aligned
with the co-ordinate axes.

I Then rescale each co-ordinate so that the variance of the noise is
identical in all directions.

I In that space, the optimum detection statistic is a simple inner
product: the magnitude of the perpendicular projection of the data
onto the (normalized) signal vector.

I We say the noise, described by Sk , defines a metric for the waveform
space, and we are transforming to a co-ordinate system where the
metric is flat, then using the normal inner product in that
co-ordinate system as the detection statistic.



The Matched Filter
I The detector derived above assumed we knew where the signal

would be located in the data. What if we don’t?

I One approach is to treat the time of the signal as a parameter, not
as a degree of freedom of the model, and obtain a detection statistic
that is a function of that parameter.

s̃k → s̃ke
2πijk (21)

F → F (tj) =
∑
k

x̃k s̃k
Sk

e2πijk (22)

This can be computed efficiently using an FFT and if rescaled so
that 〈F 〉 = 1 is called the “matched-filter signal-to-noise ratio”.

I NOTE: this is not an optimal detector for the presence of a signal
(strictly speaking, we’ve simply not proven it to be, but I can tell
you that it’s not). This is not answering the question “is there is a
signal in the data?”, this provides a sequence of answers the
questions “is there a signal in the data now? now? now? ...”.



The Real World

I Data do not constitute a stationary Gaussian random field: m-point
joint distribution functions are not time-translation invariant, there
are “glitches” in the data whose amplitudes are maybe more like
power laws than Gaussians (like earthquakes), though nobody really
knows what statistics they obey.

I We are not searching for one signal, but for any member of a family
of signals, not all of which we believe are equally likely.



The Real World

I What do we do? We play a different game.

I Recall the coin toss test used to find biased coins:
I the N-P criterion and lemma told us how to construct an “optimum”

discriminant from the outcome of three tosses of the coin,
I but it was our choice to use the outcome of three tosses as the data

from which to construct the discriminant.
I Could have chosen to use four tosses,
I could have tried to measure the coins’ internal mass distribution with

an X-ray machine.



The Real World

I So far we’ve been imagining that our “data” are the strain
time-series samples collected in the instrument. Give up on that.

I Guided by the knowledge that the matched filter is a good idea for a
known signal at a known time in stationary Gaussian noise, run a
bank of matched filters over the data, and collect the threshold
crossings.

I Borrowing from the language of particle physics, call these
“triggers”; if more than one detector yields a trigger from the same
template at nearly the same time called that a “coincidence”.

I Single triggers, and coincidences of triggers, are collectively called
“candidates”.



The Real World

I The question redefined: considering each coincidence individually to
be the data, is it a GW? Construct a detection statistic to decide
this with the highest efficency at some fixed false-alarm rate.

I Alternatively: considering the coincidences collectively to be the
data, how many signals are present? This is not a detection
problem, it’s a problem in statistical inference. See Farr et al.,
arXiv:1302.5341 [astro-ph.IM].

I Remember: there is no reason for this methodology, there is no
derivation that tells you that “template banks” and “triggers” and
“coincidences” are the best thing to be doing.

I This is the end result of a series of choices that have evolved
organically as our understanding of the problem has improved while
subject to the constraint of getting results published on time.

I Nevertheless, given this choice, we can apply the N-P lemma to
construct the best ranking statistic that we can.



Implementation
I Each template waveform is one member of the family of waveforms

we are looking to find in the data, we construct a matched filter for
each template, and from that each “trigger” provides:
I The physical properties of the source modelled by the template:

component masses, spins, tidal deformabilities, etc., etc..
I The time of the signal-to-noise ratio’s peak.
I The magnitude and phase of the signal-to-noise ratio at its peak.
I One or more χ2 residual values.
I The identity of the antenna that produced the trigger (i.e., its

location and orientation).
I That antenna’s strain spectral density at the time of the event.

I Each “coincidence” is a set of triggers, and so provides all of the
information carried by the triggers as well as:
I The identities of the antennas that did not yield triggers.
I Their strain spectral densities at the time of the event.
I The time delays between SNR peaks for the antennas that did.

I The optimum detection statistic in the N-P sense is

L(coincidence) =
P(parameters|signal)

P(parameters|noise)
.



Implementation

I The different pipelines differ in how they approximate

L(coincidence) =
P(parameters|signal)

P(parameters|noise)
.

I ihope/pycbc:
I Discard trigger masses, etc., trigger phases, antenna sensitivies, and

inter-instrument time delays.
I Digest each trigger’s SNR and χ2 properties into an “effective SNR”

value, ρeff .
I P(parameters|signal) ≈ 1.
I P(parameters|noise) ≈ 1/

√∑
ρ2eff .



Implementation

L(coincidence) =
P(parameters|signal)

P(parameters|noise)

I gstlal:
I See Cannon et al., Likelihood-Ratio Ranking Statistic for Compact

Binary Coalescence Candidates with Rate Estimation,
arXiv:1504.04632 [astro-ph.IM].

L (. . .) = L
(
. . . |θ̄

)
L
(
θ̄
)

=
P
(
{H1,L1, . . .} , tH1, ρH1, χ

2
H1, . . . |θ̄, signal

)
P
(
{H1,L1, . . .} , tH1, ρH1, χ2

H1, . . . |θ̄,noise
) L (θ̄)



Implementation

P
(
{H1,L1, . . .} , tH1, ρH1, χ

2
H1, . . . |θ̄, signal

)
P
(
{H1,L1, . . .} , tH1, ρH1, χ2

H1, . . . |θ̄,noise
) L (θ̄)

I Using disccretely-sampled (histogram) approximations of the joint
probability distributions of the remaining parameters, and

I Assuming statistical independence of the noise processes in distinct
antennas,

I Populate denominator PDFs using triggers that fail coincidence combined
with a Poisson model for the formation of chance coincidences.

I Replace P(parameters|signal) with
P(parameters|signal we can publish a detection claim for) and compute
the latter algebraically assuming the statistics of clean Gaussian data.



Implementation

Numerator is factored like this:

= P (t|signal)× P ({H1,L1, . . .} |t, signal)
× P (ρH1, ρL1, . . . |t, {H1,L1, . . .} , signal)

×
∏

inst∈{H1,L1,...}

P
(
χ2
inst|ρinst, signal

)
.

I Assume that χ2 residuals are correlated with SNR, and that SNRs
are correlated across instruments, but apart from that χ2 values are
statistically independent.

I P(t|signal) obtained from detector sensitivities (horizon distances).



Implementation

Denominator is factored like this:

= P (t|noise)× P ({H1,L1, . . .} |t,noise)

×
∏

inst∈{H1,L1,...}

P
(
ρinst, χ

2
inst|noise

)
.

I Assume noise processes in different instruments are statistically
independent.

I P(t|noise) obtained from detector trigger rates.



Implementation



Implementation
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Implementation

Statistical independence of χ2.
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See Cannon et al., arXiv:1504.04632 [astro-ph.IM].



Implementation

With no Virgo
in the
network.



Implementation
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Implementation

Recent improvements:

I Selection of density estimation kernel for (ρ, χ2) PDFs automated.

I P(t, {H1,L1, . . .} |signal) and P(t, {H1,L1, . . .} |noise) now really
depend on time instead of being marginalized over two-week blocks.

I L(θ̄) implemented: ranking statistic can now be provided with an
astrophysical merger rate model to take into consideration when
assessing candidates.

I Phases and time delays and their correlations with SNR have been
incorporated. Already had this for two detectors in O2, now
generalized to N for O3 with Virgo and hopefully KAGRA.



Assessing Significance — False-Alarm Probability

I pycbc:
I Add offsets to trigger times,
I construct new coincidences,
I histogram ranking statistics,
I repeat until tired or until additional statistically independent time

slides are no longer possible to construct.

I gstlal:
I Ranking statistic’s denominator is the PDF for the parameters of

noise coincidences.
I Use importance-weighted sampler to generate synthetic noise

coincidence parameters,
I for each output of the sampler, evaluate ranking statistic,
I histogram the values,
I repeat until tired.
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Take Home Message

I Not a solved problem.

I New, better, approach could be devised.

I Even the current approach is not fully implemented.
I Partitioning of template bank into θ̄ blocks not automated.
I Auxiliary channels ignored by ranking statistic. ← this is being

actively pursued.

I Lots of room for new ideas and contributions from new people.


