The 17th CNS International Summer School

MEAN-FIELD STUDY OF THE RADIATIVE CAPTURE ¹²C(p,γ)¹³N AND ¹³C(p,γ)¹⁴N REACTIONS

Speaker: Le-Anh Nguyen Supervisor: Prof. Dao Tien Khoa

Ho Chi Minh City University of Education, Vietnam Institute of Nuclear Science and Technology, VINATOM, Vietnam

25/8/2018

- I. Radiative capture
- II. Nuclear mean-field potential
- III. Mean-field description of the ${}^{12}C(p,\gamma){}^{13}N$ and ${}^{13}C(p,\gamma){}^{14}N$ reactions
- IV. Summary

RADIATIVE CAPTURE

А а Radiative capture is an important process due to its astrophysical applications. BBN, stellar evolution, element synthesis, X-ray bursts, etc. (p,γ) 170 18_F 5.6 MeV 7.5 MeV (,e+v) (,e⁺v 2.8 Mev 1.2 MeV 7.4 MeV 10 min **CNO cycle** 1 min pp chain (.e+v) 150 17r 1.7 Mev 110 min (,e+v) (p,γ) 2.7 MeV ^³He (p,y) 0.6 Mev 2 min 2.0 MeV Cycle 2 Cycle 3 Cycle 1 (p,γ) 8.0 Mev 180 15_N 160 (p, y) ¹H p,α) Ή Cycle 4 .0 Mev 12.1 Mev Poton (p,α) 8.1 Mev γ Gamma ray Nexton (p,α) 4.0 Mev V Neutrino O Positron CNO: T9 < 0.2 Hydrogen burning 3

RADIATIVE CAPTURE

Coulomb pot. (Nuclear pot.) Spin-orbit pot.

Bound state: $u_J(r) \rightarrow C \exp(-k_B r)$

Normalization

Scattering state: $u_J(r) \rightarrow F_J(kr) \cos \delta_J + G_J(kr) \sin \delta_J$

RADIATIVE CAPTURE

Using the balanced detail, the cross section for the radiative capture $A(p;\gamma)B$ reaction is determined as

NUCLEAR MEAN-FIELD POTENTIAL

Doan Thi Loan, Bui Minh Loc, and Dao T. Khoa, Phys. Rev. C 92, 034304 (2015)

Dao T. Khoa, Nguyen Hoang Phuc, Doan Thi Loan, and Bui Minh Loc, Phys. Rev. C 94, 034612 (2016)

NUCLEAR MEAN-FIELD POTENTIAL

NUCLEAR MEAN-FIELD POTENTIAL

9

MEAN-FIELD DESCRIPTION OF THE ${}^{12}C(p,\gamma){}^{13}N$ AND ${}^{13}C(p,\gamma){}^{14}N$ REACTIONS

MEAN-FIELD DESCRIPTION OF THE ${}^{12}C(p,\gamma){}^{13}N$ AND ${}^{13}C(p,\gamma){}^{14}N$ REACTIONS

0.2

0

0.4

T₉ (K)

0.6

0.8

1 11

MEAN-FIELD DESCRIPTION OF THE ¹²C(p,γ)¹³N AND ¹³C(p,γ)¹⁴N REACTIONS

J. T. Huang et al. Atom.Data Nucl.Data Tabl. 96 (2010)

SUMMARY

The folded potential gives a good OM description of the elastic p+¹²C scattering at several energies.

This SFM approach is further used to calculate the nuclear mean-field potential for the study of the astrophysical S factor of the ${}^{12}C(p,\gamma){}^{13}N$ and ${}^{13}C(p,\gamma){}^{14}N$ reactions.

Reaction rates of the radiative capture reactions which are an importantly astrophysical quantity are produced to describe effectively the experimental data.

THANK YOU FOR YOUR ATTENTION!