

Production of the Gamma-ray via narrow resonance reaction and its applications

Yongle DANG (党永乐) China Institute of Atomic Energy E-mail: dang_2018@126.com

1.Background & Motivation

2.Gamma-ray sources

3.Gamma-ray via resonance reaction

Development of nuclear power is the strategic choice for solve the energy supply and ensuring the sustainable development of economy and society.

thermal power plant

nuclear power plant (Daya Bay)

Development of nuclear power is the strategic choice for solve the energy supply and ensuring the sustainable development of economy and society.

Background

- Nuclear reactor(1Gwe) can product about 30-50 tons nuclear waste one year, including long-lived radioactive waste about 150 kg.
- □ Disposal of long-lived radioactive wastes:
 - Deeply bury→hundreds meters underground or deeper strata (Yucca mountain project in US, \$30 billion)
 - Transport to the space →outside of solar system (launcher & space capsule filled with nuclear waste)
 - \succ Ice cover
 - ▶ ...

Unable to ensure absolute safety which is the fundamental requirement of longlived radioactive wastes disposal !

➤ Neutron Transmutation→ with the bombardment of neutron, long-lived radioactivity become short-lived or stable.

Neutron transmutation

Nuclei	Half Decay (year)	Neutron Cross Section (b)	$\begin{array}{c} {\rm Production} \\ {\rm (Ci/year)} \end{array}$	Amount (kg/year)
$85 \mathrm{Kr}$	11	1.7	$3.0 imes 10^5$	0.79
90Sr	29	0.014	25×10^6	17.8
93Zr	1.5×10^6	2.6	61	24.0
99Tc	2.1×10^5	20	433	25.5
107 Pd	$6.5 imes 10^6$	1.8	3.6	7.0
129I	1.6×10^7	27	1.0	5.8
135 Cs	2.3×10^6	8.7	13.5	11.7
$137 \mathrm{Cs}$	30	0.25	$3.5 imes 10^6$	39.5
$151 \mathrm{Sm}$	90	15,000	1.1×10^4	0.4
TRU				
237 Np	2.1×10^6	181	11	14.4
241Am	432	603	$5.0 imes 10^3$	1.46
$243 \mathrm{Am}$	7380	79	601	3.03
$243 \mathrm{Cm}$	28,5	720	55	0.01
244Cm	18	15	5.8×10^4	0.72
$245\mathrm{Cm}$	8500	2,347	$4.1 imes 10^3$	0.03

Imasaki K, Li D, Miyamoto S, et al. Lasers and Nuclei. Springer Berlin Heidelberg, 2006.

Nuclei	Half Decay (year)	Neutron Cross Section (b)	Production (Ci/year)	Amount (kg/year)
FP				
$85 \mathrm{Kr}$	11	1.7	$3.0 imes 10^5$	0.79
90Sr	29	0.014	25×10^6	17.8
93Zr	$1.5 \times 10^{\circ}$	2.6	61	24.0
$99 \mathrm{Tc}$	2.1×10^5	20	433	25.5
107 Pd	$6.5 imes 10^6$	1.8	3.6	7.0
129I	1.6×10^7	27	1.0	5.8
135 Cs	2.3×10^6	8.7	13.5	11.7
$137 \mathrm{Cs}$	30	0.25	$3.5 imes 10^6$	39.5
$151 \mathrm{Sm}$	90	15,000	1.1×10^4	0.4
TRU				
$237 \mathrm{Np}$	2.1×10^6	181	11	14.4
241Am	432	603	$5.0 imes 10^3$	1.46
$243 \mathrm{Am}$	7380	79	601	3.03
$243 \mathrm{Cm}$	28,5	720	55	0.01
244Cm	18	15	5.8×10^4	0.72
245Cm	8500	2.347	4.1×10^{3}	0.03

- Several nucleus have small neutron capture cross section
- Stable nucleus may transmute to long-lived radioactive nucleus

$$^{133}Cs \rightarrow ^{134}Cs \rightarrow ^{135}Cs \rightarrow ^{136}Cs$$

stable 2.06 y 2.3 My 13.16 d

Imasaki K, Li D, Miyamoto S, et al. Lasers and Nuclei. Springer Berlin Heidelberg, 2006.

Photonuclear transmutation

Giant dipole resonances may result in a number of de-excitation events, such as nuclear fission, emission of neutrons or gamma rays, or combinations of these. Classical causes of the giant dipole resonances are irradiation with gamma rays at energies from 7 to 40 MeV.

 $^{135}Cs \rightarrow {}^{134}Cs/{}^{133}Cs$ $^{133}Cs \rightarrow {}^{132}Cs(6.5 \text{ d})/{}^{131}Cs(9.7 \text{ d})$

Ledingham K, Magill J, Mckenna P, et al. Journal of Physics D Applied Physics, 2003, 36(18):L79-L82.

- Electron accelerator, ELBE & S-DALINAC
- Continuous gamma-ray spectrum

G. Rusev, R. Schwengner, F. Donau et al., Phys. Rev. C 73,044308(2006).

LCS-Y

LCS- γ (Laser Compton Scattering γ -ray)

- ➢ New SUBARU
- ➢ Electron beam: 1 GeV
- ➤ Laser light: 1064nm, 0.67 W
- Photon energy: max around 17 MeV
- > γ -ray photon yield: 2 × 10⁵ photons/MeV/s

Imasaki K, Li D, Miyamoto S, et al. Lasers and Nuclei. Springer Berlin Heidelberg, 2006.

resonance reaction γ*-ray*

Energy of the emission γ -ray:

Energy of proton $+S_p$ of the B nuclei

Reaction	$E_{\gamma}(MeV)$	$E_{R}(MeV)$
$^{19}F(\mathrm{p},\alpha\gamma)$	6.1	≤ 0.96
$^{19}F(\mathrm{p},\alpha\gamma)$	7.0	\leq 0.96
$^{13}C(\mathbf{p},\boldsymbol{\gamma})$	9.17	1.747
$^{7}Li(\mathbf{p},\boldsymbol{\gamma})$	14.8	0.44
$^{7}Li(\mathbf{p},\boldsymbol{\gamma})$	17.6	0.44
$^{3}H(\mathbf{p},\boldsymbol{\gamma})$	19.8-30	

Fowler W A, Lauritsen C C, Lauritsen T. Reviews of Modern Physics, 1948, 20(1):236-277.

resonance reaction γ-ray

Energy of the emission γ -ray:

Energy of proton $+S_p$ of the B nuclei

Reaction	$E_{\gamma}(MeV)$	$E_{R}(MeV)$
$^{19}F(\mathbf{p},\alpha\gamma)$	6.1	≤ 0.96
$^{19}F(\mathbf{p},\alpha\gamma)$	7.0	≤ 0.96
$^{13}\mathcal{C}(\mathbf{p},\boldsymbol{\gamma})$	9.17	1.747
$^{7}Li(\mathbf{p},\boldsymbol{\gamma})$	14.8	0.44
$^{7}Li(\mathbf{p},\boldsymbol{\gamma})$	17.6	0.44
$^{3}H(p,\gamma)$	19.8-30	

Fowler W A, Lauritsen C C, Lauritsen T. Reviews of Modern Physics, 1948, 20(1):236-277.

¹³
$$C(\mathbf{p}, \boldsymbol{\gamma}) @E_p = 1.747 MeV$$

$$\Gamma_{T} = 122eV$$

$$^{13}C + p \rightarrow ^{14}N^{*} - \begin{bmatrix} ^{13}C + p & \Gamma_{p} = 115.7eV \\ & & \\ ^{14}N + \gamma & & \Gamma_{\gamma} = 6.3eV \end{bmatrix}$$

Breit-Wigner formula

$$\sigma(E_p) = \frac{\pi \lambda_p^2 g \Gamma_p \Gamma_{\gamma}}{(E_{pc.m.} - E_{Rc.m.})^2 + (\frac{\Gamma_T}{2})^2}$$

$$\sigma_{max} = \sigma \left(E_p = 1.747 MeV \right) = \frac{4\pi \lambda_p^2 g \Gamma_p \Gamma_\gamma}{(\Gamma_T)^2} \approx 106 \ mb$$

Vartsky D, Goldberg M B, Engler G, et al. Nuclear Physics A, 1989, 505(2): 328-336

resonance reaction γ-ray

Experimental setup:

- > Proton beam: E=1.75 MeV, I=8 μ A, 1‰
- > Isotopically pure target: ${}^{13}C$, 100 µg/cm²
- > Detector: HPGe: φ 55.5 mm × 78.1 mm, 35%

LaBr₃: $3'' \times 3''$

NaI: 5"×5"

Detector	Distance/cm	$\theta/^{\circ}$
HPGe	69	28
LaBr ₃	81	38
NaI	43.5	81

Energy response

- ➤ The energy response of HPGe is linear in the energy range 1.5-9 MeV ;
- The energy responses of LaBr₃ and NaI are linear in the energy range 1.5-3 MeV, but the nonlinearity of LaBr₃ comes up to 3.5% and NaI comes up to 11% at 9 MeV.

Spectrum of HPGe

resonance reaction γ-ray

thick target yield curve of 9.17MeV γ -ray

angular distribution of 9.17MeV γ -ray

Thick target yield of 9.17MeV γ -ray

$$Y_{max} = 4.7 \pm 0.4 * 10^{-9} \gamma/proton$$

Flux of 9.17MeV γ -ray at proton current 8 μ A

$$I_{\gamma} = 2.3 \pm 0.2 * 10^5 s^{-1}$$

efficiency calibration of HPGe

The ¹⁹⁷Au(γ , n) reaction produces the unstable nucleus ¹⁹⁶Au that decays either to ¹⁹⁶Pt by electron capture or positron emission (EC+ β +)($T_{1/2} = 6.18 d$) or to ¹⁹⁶Hg by β decay (β -).

Nuclide	$E_{\gamma}(keV)$	р
¹⁹⁶ Pt	333.03(5)	0.229(10)
¹⁹⁶ Pt	355.73(5)	0.87(3)
¹⁹⁶ Hg	426.10(8)	0.066(3)

Decay properties of the ¹⁹⁶Au nucleus

Experimental setup:

Proton beams of 6-8 μ A intensity were directed onto an isotopically pure ¹³C target of 100 μ g/cm², evaporated on a gold disk which thick is 2 mm. The targets were irradiated for 6 hours.

¹⁹⁷Au(γ, n)

Low-background and anti-Compton HPGe detector

355.73keV γ -ray in the decay of ¹⁹⁶Au

The calibration of the detector's efficiency : 356.01keV γ -ray from ¹³³Ba decay which branching ratio is 62.05%

¹⁹⁷Au(γ, n)

For the response rate of photo neutron P,

$$\Delta P = I(\theta) (1 - e^{-N_s(\theta) * \sigma_T}) s \Delta \Omega$$

 $I(\theta)$ is the flux of 9.17 MeV γ -ray of unit solid angle at θ .

$$I(\theta) = I(0) \frac{W(\theta)}{W(0)}, \ \Delta \Omega = 2\pi sin\theta \Delta \theta$$

$$N_{\gamma} = P(1 - e^{-\lambda t} \frac{e^{-\lambda t_1}}{\lambda} (1 - e^{-\lambda t_2}) * \varepsilon I_{\gamma}$$

$$\sigma' = \frac{N_{\gamma} * \sigma_T}{(\frac{P}{S})(1 - e^{-\lambda t})\frac{e^{-\lambda t_1}}{\lambda} (1 - e^{-\lambda t_2}) * \varepsilon I_{\gamma}}$$

We determined the value of the cross section of ${}^{197}Au(\gamma, n)$ reaction at 9.17 MeV to 43.79 ± 1.1 mb, which correspond with the result of bremsstrahlung- γ and LCS- γ .

Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 48, No. 5, p. 834–840 (2011) Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 48, No. 7, p. 1017–1024 (2011) Physical Review C, 2008, 78(5):186-200

⁷Li(p, γ)

- High and single energy γ-ray not only have important potential in the nuclear wastes disposal, but also is of great significant in nuclear structure, flash photography and nuclear astrophysics.
- > We determined the thick-target yield of the 9.17MeV γ-ray in ${}^{13}C(p, \gamma)$ to 4.7 ± 0.4 * 10⁻⁹γ/proton. For the proton with 10mA flux, the γ-ray brightness will be 3×10⁸/s which is considerable with LCS-γ equipment.
- > The energy response of HPGe detector is linear for γ -ray under 18 MeV.
- > The measurement of the cross section in ${}^{197}Au(\gamma, n)$ verified the feasibility of photonuclear transmutation.

THANK YOU!

Inadequacies, please criticize!