

Supernova Nucleosynthesis: Radioactive Nuclear Reactions and Neutrino-Mass Hierarchy

> Xingqun YAO (姚 星群) Collaborators: Toshitaka Kajino, Motohiko Kusakabe

Hidetoshi Yamaguchi, Seiya Hayakawa, Silvio Cherubini

2023/Aug/31st

Introduction-1: Self-Interaction and MSW effect

Model : Supernova (SN) nucleosynthesis model and ν -process

- Initial mass: $20M_{\odot}$ evolves to a helium core of $6M_{\odot}$ before collapse (Kikuchi et al., 2015).
- Nuclear reactions :JINA REACLIB (Cyburt et al. 2011)
- Hydrodynamics & reaction network (Kusakabe et al. 2019)
- Neutrino flavor change: MSW(Yoshida et al. 2006 ApJ)

Collective effect (Ko et al.2022 ApJ)

Neutrino Reaction rate:

- $^{12}C+v &^{4}He+v : (Yoshida et al. 2008)$
- ¹⁶**O**+v : (T. Suzuki et al. Phys. Rev. C. 2018) (new) (R.D. Hoffman & S.E. Woosley (1992) (old) ¹¹B abundance, \sim 3 larger!
- ²⁰Ne+v : (Satoshi Chiba, Suzuki's **new**)

v-A reaction rate uncertainties:

- Neutral current: $\pm 20\%$
- Charged current: $\pm 10\%$

Neutrino & SN model parameters (Yoshida et al., 2004, 2006):

- neutrino energy in SN: $E_{\nu} = 3 \times 10^{53} \text{erg}$
- decay time of neutrino luminosity: $\tau_{\nu} = 3s$
- Neutrino temperatures:

 $T_{\nu_e} = 3.2;$ $T_{\overline{\nu}_e} = 5.0;$

$$T_{v_x} = 6.0 \text{ MeV} (x = \mu, \tau, \bar{\mu}, \bar{\tau}).$$

method: radioactive nuclear reaction effects, ${}^{11}C(\alpha,p){}^{14}N$ and others

Reaction	$^{7}\mathrm{Li}$	$^{7}\mathrm{Be}$	$^{11}\mathrm{B}$	$^{11}\mathrm{C}$
	0.331	1.909	0.301	1.410
$^{11}\mathrm{C}(\alpha,p)^{14}\mathrm{N}$	1.000	1.000	1.012	2.380
$^{11}\mathrm{C}(n,p)^{11}\mathrm{B}$	1.000	0.999	0.999	1.042
$ ^{11}\mathrm{C}(n,2\alpha)^4\mathrm{He}$	1.000	0.998	1.001	1.048

91 reactions related to Li7 Be7 C11 B11 been studied.

Table of without/with ratio. Without the left reaction, the relative change to nuclei result in nucleosynthesis. ${}^{11}C(\alpha,p){}^{14}N \rightarrow significant to {}^{11}C$

	correspond reaction						rate # in JINA reaclib		abundance change			
reaction #								reaction #	Li7	Be7	B11	C11
1	be7	li7					8	1	0.075%	0.022%	-0.003%	0.009%
2	be11	b11					10	2	0.001%	0.011%	-0.003%	0.013%
3	c11	b11					20	3	0.049%	0.042%	-4.855%	25.630%
4	n11	c11					29	4	0.014%	0.001%	0.000%	0.000%
5	he8	n	li7				2701	5	0.013%	0.003%	-0.007%	0.028%
										-	1	1
38	n	li7	d	li6			21630	38	0.014%	0.001%	-0.002%	0.011%
39	n	li7	he4	he4			21631	39	8 824%	-2.065%	4 654%	-1 209%
40	d	li7	p	li8			21635	40	0.016%	-0.002%	0.011%	-0.051%
41	t	li7	n	be9			21636	41	1.301%	1.910%	1.819%	0.509%
42	t	li7	d	li8			21638	42	0.014%	0.001%	-0.005%	0.024%
12	ho/	li7	n	h10			21640	13	0.014%	0.001%	-0.008%	0 036%
41	1164	110	П	I DIT	T.	1	21040	41	0.03770	-U.UU170	-0.00470	-0.003%
48	n	be7	d	li6			21652	48	0.014%	0.001%	-0.003%	0.016%
49	n	be7	he4	he4			21653	49	0.032%	1.519%	0.228%	0.750%
50	he4	be7	р	b10			21654	50	0.014%	0.012%	-0.001%	0.018%
		• •	1	1000	1		04057		0.04.44	0.001	0.000	
59	р	b11	n	c11			21684	59	0.014%	0.001%	0.004%	-0.002%
60	he4	b11	р	c14			21689	60	0.289%	-15.790%	27.190%	-10.9709
61	р	c11	he4	b8			21708	61	0.014%	0.001%	-0.003%	0.012%
10	11	Р	1104	1104	1160	117	01114	10	0.01470	0.001/0	0.00070	0.000//
79	n	р	he4	he4	t	be7	37775	79	0.014%	0.001%	0.000%	0.000%
80	p	р	he4	he4	he3	be7	37778	80	0.014%	0.001%	0.000%	0.000%

by increase them 10 times (based on JINA rate)

method: ¹¹C(α ,p)¹⁴N reaction rate estimation

Data from S. Hayakawa et al. PRC 93, 065802 (2016).

method: ¹¹C(α ,p)¹⁴N reaction rate estimation

Result: abundance of 4 nuclei

Abundance of ⁷Li, ⁷Be, ¹¹B, ¹¹C, ¹³⁸La and abundant nuclei invert normal : uncertainty bands. Neutrino induced reaction : 1. ⁴He+v; 2. ¹²C+v; 3. ¹⁶O+v; 4. ²⁰Ne+v ------ :without ¹⁶O+v & ²⁰Ne+v

Uncertainty:

- 1. ¹¹C (α,p)¹⁴N
- 2. Neutrino reactions: CC±20% NC±10%

Neutrino Flavor change:

- MSW effect
- Self Interaction (collective oscillation)

Result: mass ratio of ¹³⁸La/¹¹B & Observation Constraint

Note: the La138 has been multiplied by 4 to fit the metallicity difference between SN1987A ($Z_{\odot}/4$) and solar system.

Summary

Thank you for your attention

Motivation and Purpose:

- Neutrino oscillation effect (MSW+SI) in the SN
- Important nuclear reaction (${}^{11}C(\alpha,p){}^{14}N$)
- Comparing with astronomical observation

Results

 \rightarrow distinguish the neutrino hierarchy.

- Final abundances of ⁷Li, ¹¹B & ¹³⁸La depend strongly on the neutrino mass hierarchy.
- 2. The new ¹⁶O & ²⁰Ne+ ν reaction rates are included in the nucleosynthesis program.
- 3. The uncertainties in ${}^{11}C(\alpha, p){}^{14}N$ and its effect are estimated.
- 4. To predict mass-hierarchy dependent yields more accurately \rightarrow to remove nuclear reaction rate uncertainties (both νA and radioactive reactions).
- 5. 138 La/ 11 B mass ratio with mass cut is compared with solar system abundance \rightarrow Inverted hierarchy more preferred.