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1. Introduction
The nuclear shell-model calculation is one of the most

powerful tools to discuss various nuclear structures micro-
scopically. In a traditional shell-model framework such
as [1, 2], the parameters of the shell-model Hamiltonian
are obtained employing the effective-interaction theory and
these values are corrected phenomenologically so that the
shell-model results well reproduce the experimental binding
and excitation energies. For the analysis of the uncertainty
caused by this correction [3, 4], we have to perform many
shell-model calculations repeatedly by changing these pa-
rameters slightly. In such a situation, the eigenvector-
continuation (EC) technique [5] is expected to shorten the
computation time of these calculations. In this report, we
introduce the EC to nuclear shell-model calculations and
discuss its performance. This report is condensed from
Ref. [6].

2. Theoretical Framework
The nuclear shell-model Hamiltonian is defined as

H(c) =
∑
i

eic
†
i ci +

∑
i<j,k<l

vijklc
†
i c

†
jclck (1)

where c†i is a creation operator of the single-particle state i
in the model space. The ei and vijkl are parameters, which
are determined so that the eigenvalue agrees with the exper-
imental value keeping rotational and isospin symmetries. c
denotes a set of the parameters to define ei and vijkl. The
eigenenergy E(c) and the eigenvector |ϕ(c)⟩ are given by
solving the eigenvalue problem

H(c)|ϕ(c)⟩ = E(c)|ϕ(c)⟩, (2)

by means of the Lanczos method. However, the dimension
of the Hamiltonian matrix is often huge [7], which would
prevent us from solving the eigenvalue problem many times
by changing the parameters.

Here, we introduce the EC technique to the shell-model
calculations to estimate the eigenenergies and related phys-
ical observables without performing the diagonalization for
each different interaction. In the preparation stage of the
EC method, we prepare a set of sample interactions, H(s),
which are given randomly. We solve the eigenvalue prob-
lems of these sample interactions and obtain the sample
eigenvectors |ϕs⟩ as

H(s)|ϕs⟩ = Es|ϕs⟩. (3)

By using these prepared eigenvectors, the eigenvalue of
a target Hamiltonian H(t) is estimated without solving its

eigenvalue problem as follows. The eigenvector of H(t) is
approximated by solving the generalized eigenvalue prob-
lem in the subspace spanned by the sample vectors. It is
obtained by
Ns∑
s′=1

H̃ss′ ṽs′ = Ẽt

Ns∑
s′=1

Ñss′ ṽs′ , (4)

with

H̃ss′ = ⟨ϕs|H(t)|ϕs′⟩
Ñss′ = ⟨ϕs|ϕs′⟩, (5)

where Ẽt is the estimated value of the exact eigenvalue of
H(t). The dimension of this generalized eigenvalue prob-
lem, namely the number of samples Ns, is far smaller than
the original eigenvalue problem in Eq. (3). The eigenvector
of H(t) is also approximated by a linear combination of the
sample eigenvectors with the coefficients ṽs as

|ϕt⟩ ∼ |ϕ̃t⟩ =
∑
s

ṽs|ϕs⟩, (6)

which is used to estimate other physical quantities.
To perform shell-model calculations and the EC estima-

tion efficiently, one of the authors developed a new shell
model code ”ShellModel.jl”, which is written in the Julia
language and is publicly available [8].

3. Benchmark Results
Here we present a benchmark result of the EC estimation

in shell-model calculations. We take two sd-shell nuclei,
28Si and 25Mg, with the sd-shell model space as examples.
In this case, the number of parameters for the shell-model
Hamiltonian is 66. The M -scheme dimension is 93,710 for
28Si and 44,133 for 25Mg.

As a first example, we take the yrast 0+, 1+, 2+, and 3+

energies of 28Si. We prepare 250 sample interactions gen-
erated by the sum of the USDB interaction [1] and random
numbers with the 1-MeV standard deviation. For valida-
tion, we prepare 100 target interactions in the same way
and estimate the energies by the EC method employing the
sampling results. Figure 1 shows the EC estimated energies
against the exact ones of the yrast J = 0+, 1+, 2+, 3+, and
4+ states of 28Si. They agree quite well and its typical error
is less than 1%. Note again that the EC estimate requires
little additional computations.

As an example of odd nuclei, the energies of J =
1/2+, 3/2+, 5/2+, 7/2+, and 9/2+ states of 25Mg are es-
timated by the EC method with the same 100 target interac-
tions. Figure 2 shows the EC estimated energies agree quite
well with the exact one similarly to Fig. 1.
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Figure 1. EC estimated energies of the J = 0+, 1+, 2+, 3+, and
4+ states of 28Si against the exact ones. The EC estimation
is performed for the 100 different interactions with employ-
ing 250 samples. The dotted line shows the ideal agreement.
Taken from Ref. [6].
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Figure 2. EC estimated energies of the
J = 1/2+, 3/2+, 5/2+, 7/2+, and 9/2+ states of 25Mg
against the exact ones. See the caption of Fig. 1 for details.
Taken from Ref. [6].

4. Summary
We introduce the EC method to nuclear shell-model cal-

culations and investigate its performance. We demonstrated
that the EC estimated energies well reproduce the exact
eigenenergies for sd-shell nuclei.

The accuracy of the EC estimation concerning
quadrupole and magnetic moments and excitation energies
is further discussed in Ref. [6]. Moreover, the approximated
wave function given by the EC method can be used as an
initial vector of the Lanczos iterations, which shortens the
number of the iterations [6].
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