${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ fusion at low energies

Ashish Gupta

Project Guide: Prof. Anjali Mukherjee Saha Institute of Nuclear Physics, HBNI Kolkata, India

Content

- Introduction
- Motivation
- Carbon burning
- Target
- Detector and digitizer
- Scattering Chamber
- Summary
- Near future plan

Introduction

- Reactions occuring in star influences the nucleosynthesis as well as evolution of stars
- Cloud of gas - garvitational colapse - Temprature increase fusion of nuclei
- Light ion fusion $\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{4} \mathrm{He}\right)$ \& heavy ion fusion
- Accurate determination of cross-sections and reaction rates of these reactions is primary goal of nuclear astrophysics
- In stars reaction occurs in Gamow window energy region
- Cross-section in this region is very less (pb or even less)
- Theoretiacl calculation is used for describing phenomenon

Motivation

- For ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ lots of measurement in high energy region but less in low energy region with higher uncertainty
- Presence of resonances at each 400 keV energy step
- Simple extrapolation to Gamow window not possible
- Gamow window has not been reached in direct measurement
- Indirect measurements still controversial
- Small cross-section \Rightarrow Low counting rate \Rightarrow Measurement difficult

$$
\begin{gathered}
\sigma=\mathrm{Y} / \varepsilon \mathrm{N}_{\mathrm{B}} \mathrm{~N}_{\mathrm{T}} \\
\sigma=\text { cross-section, } \mathrm{Y}=\text { No. Of counts, } \varepsilon=\text { Detector efficiency, } \\
\mathrm{N}_{\mathrm{B}}=\text { No. Of beam particle, } \mathrm{N}_{\mathrm{T}}=\text { no. of target nuclei/area }
\end{gathered}
$$

Reaction rate

- Reaction rate

$r=\mathrm{N}_{\mathrm{x}} \mathrm{N}_{\mathrm{y}}<\sigma \mathrm{V}>/\left(1+\delta_{\mathrm{xy}}\right)$

$$
r=\text { reacton rate, } N_{x} \text { and } N_{y} \text { is available nuclei }
$$

$<\sigma \mathrm{V}>$ is product of MB stastics and cross-section, $\left(1+\delta_{x y}\right)$ is delta function
\longrightarrow Stars follow MB statistics

$$
\psi(v)=4 \pi v^{2}\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \exp \left(-\frac{m v^{2}}{2 k T}\right)
$$

\longrightarrow Product of MB statistics and cross section

$$
\langle\sigma v\rangle=\frac{8}{(\pi \mu)^{1 / 2}} \frac{1}{(k T)^{3 / 2}} \int_{0}^{\infty} S(E) \exp \left(-\frac{E}{k T}-\frac{b}{E^{1 / 2}}\right) d E
$$

Gamow window

- Product leads towards a peak E_{0}

$$
\mathrm{E}_{0}=(\mathrm{bkT} / 2)^{2 / 3}
$$

The Gamow peak

- $\Delta \mathrm{E}_{0}$ is range in which stellar reactions occurs promentoly

Carbon burning

- Gatway to heavy ion fusion
- Mass of star 8-10M
- Temperature 0.5-1 GK
- Gamow window 1-2 MeV
- Leads to the synthesis of heavier element A>20
- ${ }^{12} \mathrm{C}+{ }^{16} \mathrm{O},{ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$ reactions are also possible
- At low energies majority of cross-sections comes from ground and first excited state
- At low energies alpha and proton channels are important

${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ Level Scheme

* Charge particle and γ-ray coincidence method

Different measurements of ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$

Target

- Impurity
- Hydrogen and Deuterium
- Deuterium produces proton through d(12C,p)13C
- Reduction of impurity
- Perordic analysis of deuterium concentration
- Highly odered pyrolytic graphite (HOPG)

Two step process
HOPG structure

Background problem in y- ray method

- Natural back ground
- Beam induced background (target impurity)
- ${ }^{1} \mathrm{H}\left({ }^{12} \mathrm{C}, y\right){ }^{13} \mathrm{~N}$ with energy $\mathrm{E}_{\mathrm{y}}=2.36 \mathrm{MeV}$
- ${ }^{2} \mathrm{H}\left({ }^{12} \mathrm{C}, \mathrm{py}\right){ }^{13} \mathrm{C}$ with energy $\mathrm{E}_{\mathrm{y}}=3.09 \mathrm{MeV}$
- y-ray peaks from ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ reaction are at 440 \& 1634 KeV
- Compton background of contaminant's peak interfere with the resolution of carbon fusion peak.

Detector and digitizer

- CANBERA HPGe clover detector
- CAEN digitizer (DT5725S)
- Digitizer parameter are such fine tuned that it gives resolution less than $2 k e V$ for ${ }^{60} \mathrm{Co}$ (each peak)
- Digitizer gives addback here (CoMPASS program)
- Output can be obatined in root format so easy to analysie

Scattering chamber

- Target cooling with water
- Copper tube as subpressor
- LN_{2} cooling (cold trap)
- Place to hold a camera
- Quadrupole mass specrometer (monitoer rest gas of vaccum)
- Utra high vaccum
- Collimator
- Vacuum gauges

Schematic diagram of scattering chamber

Summary

- Target impurity $\left({ }^{1} \mathrm{H},{ }^{2} \mathrm{H}\right.$, other than ${ }^{12} \mathrm{C}$ elements)
- Natural background and beam induced background
- Charge particle mesurement gives the ground state contribution
- γ-ray mesurement does not account for ground state transition
- Charge-particle and γ-ray coincidence measurement
- High beam current: More nuclei to take part in reactions
- High detector efficiency: Detect more events (close geometry)
- Increased target thickness

Near future plan

- Scattering chamber
- Close geometry mesurement (Summing correction)
- Once we get beam time from FRENA facility at SINP than we shall perform
- ${ }^{27} \mathrm{Al}(\mathrm{p}, \mathrm{y}){ }^{28}$ Si reaction for machine calibration
- low energy measurements for ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ fusion reaction.

THANK YOU

Ashish Gupta

