The TiNA silicon detector array, development and status

Benoît Mauss

RI Physics Laboratory, Nishina Center for Accelerator-Based Science, RIKEN

SAKURA collaboration meeting

2020/09/07

SAKURA project

Study of Astrophysical Key reactions in the Universe with the low-energy RI beam Apparatus

TiNA silicon telescope

- \rightarrow Scan the excitation energy region of astrophysical interest
- → Determine the excitation energy and the decay channel for each reaction event

Version 1: ImPACT experiment ²H(⁷⁹Se,¹H)⁸⁰Se*

Drawbacks:

- Poor angular resolution (0.7°–2.4°)
- Minimal angle covered $\theta_{lab} = 21.8^{\circ}$

→ Improvement needed

YY1: single sided strip silicon detector

- 300 µm thick
- 16 strips
- $\sigma \approx 30 \text{ keV}$

6 YY1 detectors in barrel configuration:

- Geometric efficiency (50%–80%)
- Large angle coverage $(75.5^{\circ} 21.8^{\circ} = 53.7^{\circ})$

Investigating ⁷⁹Se(n, γ) cross section

Technical drawing of TiNA version 2

→ Partial assembly done, full assembly soon

Version 2: Improvement of the YY1 telescopes

→ Increased efficiency, but for SAKURA project protons will stop in YY1

YY1 time performances and possibilities for PID

In-beam experiment with YY1 telescope showed:

- Backside time resolution: ~3.7 ns
- MPRS16 (strips) time resolution: ~2.3 ns
 - ➡ Improvement possible and needed

New fast pre-amplifier under test

Courtesy N. Kitamura

protons alphas 20

PID simulation for 1ns resolution (sigma)

Courtesy N. Imai

Total Energy (MeV)

20

15

Time (ns)

→ A new fast pre-amplifier to increase time resolution is in preparation

16

14

12

20

15

Total Energy (MeV)

Version 2: Addition of square DSSD+Csl telescopes

→ Angular coverage: $10^{\circ} - 80^{\circ}$ with 70% - 90% efficiency

Readout of the 1024 TTT channels

GET: General Electronics for TPCs

- Management of high channel density
- Digitization of the signal
- Developed and used for active targets and TPCs
- Electronic shared with CAT-M and $S\pi RIT TPC$

→ Treatment of the high channel density.

System partly assembled and tested

→ Detector ready for full assembly. Beam test delayed

TTT performances with GET

→ Main peak resolution < 20keV sigma. Tested with 140 Hz external trigger

Beam test planned at the Kyushu University TANDEM

Reaction: ¹²C(²H,*) at 13 MeV

Performances to be tested:

→ New schedule under discussion

Conclusion and Perspectives

Conclusion

- ▶ SAKURA project: 2 accepted experiments for neutron induced reaction studies.
- ▶ Additional nuclear structure experiment ²H(⁵⁰Ca,¹H)⁵¹Ca in the backlog.
- TiNA was developed to tackle a wide range of physics on nuclear structure and reactions, or astrophysics.
- ▶ Version 1 was successfully used to measure ⁷⁹Se(d,p)⁸⁰Se in the ImPACT project.
- Version 2 was developed for better resolution and wider coverage.
- The detector was partly constructed and tested with an ²⁴¹Am α -source.
- ▶ It is ready to be tested in-beam.

Perspectives

- Full assembly will be tested soon.
- In-beam test planned at Kyushu University TANDEM.
- ▶ Hopefully experiments will run in 2021

Thank you for your attention

RCNP Csl performances

Entrance window difference

Cabling and feedthrough

Cabling of the 1024 channel and feedthrough (Jongwon Hwang).

 \rightarrow Link established between TTT and AsAd over long distance.

Single-particle structure in ${}^{51}Ca$ via ${}^{50}Ca(d,p)$ reaction

Experiment approved by NP-PAC 2018

Spokesperson: K. Wimmer, Co-spokesperson: D. Suzuki

Goal: Study of ⁵¹Ca structure from ²H(⁵⁰Ca,¹H)⁵¹Ca Search the single particle 2p1/2, 1f5/2 and 1g9/2 states to quantify the energy gap at N = 32, 34 and possibly at N = 40

J.D. Holt et al., Jour. Phys. G 39, 085111 (2012)

 $1g_{9/2}$

 $1f_{5/2}$

 $2p_{1/2}$

 $2p_{3/2}$

34

32

+ 3 proposal with (d,p) reactions planned at upcoming NP-PAC meeting

 \rightarrow Silicon detectors array for missing mass spectroscopy \Rightarrow TiNA array

Simulations and expected angular coverage

Simulations with the *nptool* framework, based on Root and Geant4. *nptool*: A. Matta *et al.*, J. Phys. G: Nucl. Part. Phys. 43 (2016) 045113

→ Efficiency: 60%–90%, resolution: $\sigma = 140 \text{ keV}$

